Microstructural constraints on magmatic mushes under Kīlauea Volcano, Hawai'i.

Nat Commun

Department of Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool, UK.

Published: January 2020

Distorted olivines of enigmatic origin are ubiquitous in erupted products from a wide range of volcanic systems (e.g., Hawai'i, Iceland, Andes). Investigation of these features at Kīlauea Volcano, Hawai'i, using an integrative crystallographic and chemical approach places quantitative constraints on mush pile thicknesses. Electron backscatter diffraction (EBSD) reveals that the microstructural features of distorted olivines, whose chemical composition is distinct from undistorted olivines, are remarkably similar to olivines within deformed mantle peridotites, but inconsistent with an origin from dendritic growth. This, alongside the spatial distribution of distorted grains and the absence of adcumulate textures, suggests that olivines were deformed within melt-rich mush piles accumulating within the summit reservoir. Quantitative analysis of subgrain geometry reveals that olivines experienced differential stresses of ∼3-12 MPa, consistent with their storage in mush piles with thicknesses of a few hundred metres. Overall, our microstructural analysis of erupted crystals provides novel insights into mush-rich magmatic systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6946699PMC
http://dx.doi.org/10.1038/s41467-019-13635-yDOI Listing

Publication Analysis

Top Keywords

kīlauea volcano
8
volcano hawai'i
8
distorted olivines
8
olivines deformed
8
mush piles
8
olivines
6
microstructural constraints
4
constraints magmatic
4
magmatic mushes
4
mushes kīlauea
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!