A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Characterising and predicting persistent high-cost utilisers in healthcare: a retrospective cohort study in Singapore. | LitMetric

Objective: We aim to characterise persistent high utilisers (PHUs) of healthcare services, and correspondingly, transient high utilisers (THUs) and non-high utilisers (non-HUs) for comparison, to facilitate stratifying HUs for targeted intervention. Subsequently we apply machine learning algorithms to predict which HUs will persist as PHUs, to inform future trials testing the effectiveness of interventions in reducing healthcare utilisation in PHUs.

Design And Setting: This is a retrospective cohort study using administrative data from an Academic Medical Centre (AMC) in Singapore.

Participants: Patients who had at least one inpatient admission to the AMC between 2005 and 2013 were included in this study. HUs incurred Singapore Dollar 8150 or more within a year. PHUs were defined as HUs for three consecutive years, while THUs were HUs for 1 or 2 years. Non-HUs did not incur high healthcare costs at any point during the study period.

Outcome Measures: PHU status at the end of the third year was the outcome of interest. Socio-demographic profiles, clinical complexity and utilisation metrics of each group were reported. Area under curve (AUC) was used to identify the best model to predict persistence.

Results: PHUs were older and had higher comorbidity and mortality. Over the three observed years, PHUs' expenditure generally increased, while THUs and non-HUs' spending and inpatient utilisation decreased. The predictive model exhibited good performance during both internal (AUC: 83.2%, 95% CI: 82.2% to 84.2%) and external validation (AUC: 79.8%, 95% CI: 78.8% to 80.8%).

Conclusions: The HU population could be stratified into PHUs and THUs, with distinctly different utilisation trajectories. We developed a model that could predict at the end of 1 year, whether a patient in our population will continue to be a HU in the next 2 years. This knowledge would allow healthcare providers to target PHUs in our health system with interventions in a cost-effective manner.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6955475PMC
http://dx.doi.org/10.1136/bmjopen-2019-031622DOI Listing

Publication Analysis

Top Keywords

retrospective cohort
8
cohort study
8
high utilisers
8
model predict
8
phus
6
healthcare
5
hus
5
characterising predicting
4
predicting persistent
4
persistent high-cost
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!