Human carbonic anhydrase-II (hCA-II) is the most dominant physiologic isoform amongst the sixteen reported hCA isoforms. Because of its high availability in the different anatomical, and cellular sites of the eye like retina and lens, it plays a more prominent role in the regulation of intraocular pressure than the other twelve catalytically active hCA isoforms. This isoform is also located in the brain, kidney, gastric mucosa, osteoclasts, RBCs, skeletal muscle, testes, pancreas, lungs, etc. Earlier, hCA-II inhibitors were designed based on the sulfonamides e.g. acetazolamide, dichlorphenamide, methazolamide, ethoxzolamide, etc. and they were used systemically in antiglaucoma therapy. Many successful attempts have been made by the researchers in order to design more potent and effective inhibitors by incorporating various moieties in sulphonamides. Some novel scaffolds like chalcones, thiophenes, organotellurium compounds, dithiocarbamate, selenide, and 2-benzylpyrazine, etc. were also designed as hCA-II inhibitors and their inhibitory efficacy was proved in the nanomolar range. In order to obtain relevant information from the insights of their structure-activity relationship, the reported hCA-II inhibitors from the year 1989 to 2019 were critically analysed. It gave a complete insight into the relationship between their structure-activity and hCA-II inhibition. The broad spectrum of our investigation may help researchers to summarize all the crucial structural information required for the development of more potent hCA-II inhibitors for glaucoma.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioorg.2019.103557DOI Listing

Publication Analysis

Top Keywords

hca-ii inhibitors
16
structure-activity relationship
8
human carbonic
8
carbonic anhydrase-ii
8
hca isoforms
8
inhibitors
6
hca-ii
6
relationship human
4
anhydrase-ii inhibitors
4
inhibitors detailed
4

Similar Publications

Unprecedented carbonic anhydrase inhibition mechanism: Targeting histidine 64 side chain through a halogen bond.

Arch Pharm (Weinheim)

January 2025

Section of Pharmaceutical and Nutraceutical Sciences, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Sesto Fiorentino, Firenze, Italy.

2,2'-Thio-bis(4,6-dichlorophenol), namely bithionol, is a small molecule endowed with a multifaceted bioactivity. Its peculiar polychlorinated phenolic structure makes it a suitable candidate to explore its potentialities in establishing interaction patterns with enzymes of MedChem interest, such as the human carbonic anhydrase (hCA) metalloenzymes. Herein, bithionol was tested on a panel of specific hCAs through the stopped-flow technique, showing a promising micromolar inhibitory activity for the hCA II isoform.

View Article and Find Full Text PDF

In this study, four depsides were isolated from Origanum dictamnus L. and Satureja pilosa Velen. medicinal plants and their structures were assessed by means of one-dimensional (1D)- and two-dimensional (2D)-nuclear magnetic resonance, high resolution mass spectrometry, and electronic circular dichroism analyses.

View Article and Find Full Text PDF

Sulfonate derivatives are an essential class of compounds with diverse pharmacological applications. This study presents the synthesis and detailed characterization of six novel Schiff base sulfonate derivatives (L-L) through spectroscopic techniques (FT-IR and NMR). Their inhibitory potential was evaluated against human carbonic anhydrase isoenzymes (hCA I and hCA II) and acetylcholinesterase (AChE), which are crucial therapeutic targets for diseases such as glaucoma, epilepsy, and Alzheimer's disease.

View Article and Find Full Text PDF

Background: Sulfonamides are widely used carbonic anhydrase inhibitors (CAIs) in clinical settings, however, their nonspecific inhibition of multiple carbonic anhydrase isoforms can lead to reduced efficacy and side effects. This study aimed to develop sulfanilamide-diazo derivatives incorporating benzoic acid moieties as novel inhibitors of hCA II activity to reduce side effects and enhance selectivity for different CA isozymes.

Methods: We investigated the interaction between these derivatives and the hCA II isozyme via various spectroscopic and docking methods.

View Article and Find Full Text PDF

The new dibenzoazepine-substituted triazole hybrids (-) were designed by molecular hybridization approach and synthesized utilizing the Cu(I)-catalyzed click reaction. The hybrid structures (-) were obtained in high yields (74-98%) with a simple two-step synthesis strategy and fully characterized. These compounds were assessed for their influence on various metabolic enzymes including human carbonic anhydrase isoenzymes (hCA I and hCA II), acetylcholinesterase (AChE), and butyrylcholinesterase (BChE).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!