Disulfiram (DSF) is an FDA-approved drug that has been repurposed for cancer treatment. It showed excellent anticancer efficacy in combination with copper ions (Cu). Several active clinical trials testing the anticancer efficacy of DSF against various cancers are underway. In this review article, we summarized different delivery strategies for DSF-based cancer therapy. In many studies, DSF and Cu were delivered in two separate formulations. DSF and Cu formed copper diethyldithiocarbamate [Cu(DDC)] complex which was reported as a major active anticancer ingredient for DSF/Cu combination therapy. Various delivery systems for DSF and Cu were developed to enhance their delivery into tumors. The administration of preformed Cu(DDC) complex was also explored to achieve better anticancer efficacy. Several studies developed formulations that were capable of delivering Cu(DDC) complex in a single formulation. These novel formulations will address drug delivery challenges and have great potential to improve the efficacy of DSF-based cancer therapy. DSF is an off-patent drug molecule. The novel drug formulations of DSF will also serve as a good strategy for developing intellectual properties which will be critical for product development and commercialization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jconrel.2020.01.001 | DOI Listing |
J Oncol Pharm Pract
January 2025
Department of Pharmacy, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Pakistan.
Study Objective: Complex pharmacotherapy in cancer patients increases the likelihood of drug-drug interactions (DDIs). Pharmacists play a critical role in the identification and management of DDIs. The aim of present study was to evaluate the role of pharmacist in identifying antifungal drug interactions in cancer patients and providing relevant recommendations.
View Article and Find Full Text PDFRadiat Oncol
January 2025
German Cancer Consortium (DKTK), partner site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
Background: For radiotherapy of head and neck cancer (HNC) magnetic resonance imaging (MRI) plays a pivotal role due to its high soft tissue contrast. Moreover, it offers the potential to acquire functional information through diffusion weighted imaging (DWI) with the potential to personalize treatment. The aim of this study was to acquire repetitive DWI during the course of online adaptive radiotherapy on an 1.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, Wuhan, 430030, P.R. China.
Introduction: Prostate cancer is one of the most common cancers in the United States with a high mortality rate. In recent years, the traditional opinion about prostate microbiome was challenged. Although there still are some arguments, an escalating number of researchers are shifting their focus toward the microbiome within the prostate tumor environment.
View Article and Find Full Text PDFRadiat Oncol
January 2025
Department of Radiotherapy and Radiooncology, Medical Faculty, Heinrich Heine University, Moorenstr. 5, 40225, Dusseldorf, Germany.
Background: Medulloblastoma is the most common malignant pediatric brain tumor, typically treated with normofractionated craniospinal irradiation (CSI) with an additional boost over about 6 weeks in children older than 3 years. This study investigates the sensitivity of pediatric medulloblastoma cell lines to different radiation fractionation schedules. While extensively studied in adult tumors, these ratios remain unknown in pediatric cases due to the rarity of the disease.
View Article and Find Full Text PDFJ Hematol Oncol
January 2025
Department of Gynecology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
N7-methylguanosine (m7G) is an important RNA modification involved in epigenetic regulation that is commonly observed in both prokaryotic and eukaryotic organisms. Their influence on the synthesis and processing of messenger RNA, ribosomal RNA, and transfer RNA allows m7G modifications to affect diverse cellular, physiological, and pathological processes. m7G modifications are pivotal in human diseases, particularly cancer progression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!