Maternal disease and gasotransmitters.

Nitric Oxide

Perinatal Research Laboratories, Dept Ob/ Gyn, UW - Madison, Madison, WI, 53715, USA. Electronic address:

Published: March 2020

AI Article Synopsis

Article Abstract

The three known gasotransmitters, nitric oxide, carbon monoxide, and hydrogen sulfide are involved in key processes throughout pregnancy. Gasotransmitters are known to impact on smooth muscle tone, regulation of immune responses, and oxidative state of cells and their component molecules. Failure of the systems that tightly regulate gasotransmitter production and downstream effects are thought to contribute to common maternal diseases such as preeclampsia and preterm birth. Normal pregnancy-related changes in uterine blood flow depend heavily on gasotransmitter signaling. In preeclampsia, endothelial dysfunction is a major contributor to aberrant gasotransmitter signaling, resulting in hypertension after 20 weeks gestation. Maintenance of pregnancy to term also requires gasotransmitter-mediated uterine quiescence. As the appropriate signals for parturition occur, regulation of gasotransmitter signaling must work in concert with those endocrine signals in order for appropriate labor and delivery timing. Like preeclampsia, preterm birth may have origins in abnormal gasotransmitter signaling. We review the evidence for the involvement of gasotransmitters in preeclampsia and preterm birth, as well as mechanistic and molecular signaling targets.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.niox.2020.01.001DOI Listing

Publication Analysis

Top Keywords

gasotransmitter signaling
16
preeclampsia preterm
12
preterm birth
12
gasotransmitter
5
signaling
5
maternal disease
4
gasotransmitters
4
disease gasotransmitters
4
gasotransmitters three
4
three gasotransmitters
4

Similar Publications

Recent advances in the role of gasotransmitters in necroptosis.

Apoptosis

January 2025

Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China.

Necroptosis is a finely regulated programmed cell death process involving complex molecular mechanisms and signal transduction networks. Among them, receptor-interacting protein kinase 1 (RIPK1), receptor-interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like protein are the key molecules regulating this process. In recent years, gasotransmitters such as nitric oxide, carbon monoxide and hydrogen sulfide have been suggested to play a regulatory role in necroptosis.

View Article and Find Full Text PDF

Oxidative stress and neuronal apoptosis could be an important factor leading to post-hemorrhagic consequences after germinal matrix hemorrhage (GMH). Previously study have indicated that relaxin 2 receptor activation initiates anti-oxidative stress and anti-apoptosis in ischemia-reperfusion injury. However, whether relaxin 2 activation can attenuate oxidative stress and neuronal apoptosis after GMH remains unknown.

View Article and Find Full Text PDF

Role of 3-mercaptopyruvate sulfurtransferase in cancer: Molecular mechanisms and therapeutic perspectives.

Transl Oncol

January 2025

Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan 475004, China; Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan 475004, China. Electronic address:

The occurrence and development of tumor is mediated by a wide range of complex mechanisms. Subsequent to nitric oxide and carbon monoxide, hydrogen sulfide (HS) holds the distinction of being the third identified gasotransmitter. Alternation of HS level has been widely demonstrated to induce an array of disturbances in important cancer cell signaling pathways.

View Article and Find Full Text PDF

Lysosome-targeted dual-locked NIR fluorescent probe for visualization of HS and viscosity in drug-induced liver injury and tumor models.

Anal Chim Acta

February 2025

Department of Radiology, Changhai Hospital, Naval Medical University, Changhai Road 168, Shanghai 200433, China. Electronic address:

Background: Lysosomes, as an indispensable subcellular organelle have numerous physiological functions closely associated with HS and viscosity, and accurate assessment of HS/viscosity fluctuations in lysosomes is essential for gaining a comprehensive understanding of lysosome-related physiological activities and pathological processes. The previous single-response fluorescent probes for either HS or viscosity alone have the potential to generate "false positive" signals in a complex biological environment. In contrast, dual-locked probes can simultaneously respond to multiple targets simultaneously, which could effectively eliminate this defect.

View Article and Find Full Text PDF

Chemoprotective Mechanism of Sodium Thiosulfate Against Cisplatin-Induced Nephrotoxicity Is via Renal Hydrogen Sulfide, Arginine/cAMP and NO/cGMP Signaling Pathways.

Int J Mol Sci

January 2025

Department of Animal Experimentation, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra P.O. Box LG581, Ghana.

Cisplatin is a common and highly effective chemotherapeutic agent whose nephrotoxic side effect is well-characterized. Sodium thiosulfate (STS), an FDA-approved hydrogen sulfide (HS) donor drug, is emerging as a chemoprotective agent against cisplatin-induced nephrotoxicity (CIN). In this study, we investigated the chemoprotective mechanism of STS in a rat model of CIN.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!