Enhanced Loading of Functional miRNA Cargo via pH Gradient Modification of Extracellular Vesicles.

Mol Ther

Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA; Program in Molecular and Cell Biology, University of Maryland, College Park, MD, USA. Electronic address:

Published: March 2020

Based on their identification as physiological nucleic acid carriers in humans and other organisms, extracellular vesicles (EVs) have been explored as therapeutic delivery vehicles for DNA, RNA, and other cargo. However, efficient loading and functional delivery of nucleic acids remain a challenge, largely because of potential sources of degradation and aggregation. Here, we report that protonation of EVs to generate a pH gradient across EV membranes can be utilized to enhance vesicle loading of nucleic acid cargo, specifically microRNA (miRNA), small interfering RNA (siRNA), and single-stranded DNA (ssDNA). The loading process did not impair cellular uptake of EVs, nor did it promote any significant EV-induced toxicity response in mice. Cargo functionality was verified by loading HEK293T EVs with either pro- or anti-inflammatory miRNAs and observing the effective regulation of corresponding cellular cytokine levels. Critically, this loading increase is comparable with what can be accomplished by methods such as sonication and electroporation, and is achievable without the introduction of energy associated with these methods that can potentially damage labile nucleic acid cargo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7054713PMC
http://dx.doi.org/10.1016/j.ymthe.2019.12.007DOI Listing

Publication Analysis

Top Keywords

nucleic acid
12
loading functional
8
extracellular vesicles
8
acid cargo
8
cargo
5
loading
5
enhanced loading
4
functional mirna
4
mirna cargo
4
cargo gradient
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!