Stabilization of Grignard reagents by a pillar[5]arene host - Schlenk equilibria and Grignard reactions.

Chem Commun (Camb)

Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China.

Published: January 2020

Grignard reagents (RMgX) are widely used in organic synthesis. However, these highly reactive compounds are supplied in inflammable solvents, which causes extra complexity in their transportation. Herein we report that Grignard reagents with linear alkyl chains can be entrapped and stabilized by the macrocyclic host pillar[5]arene while preserving their reactivity.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9cc08728aDOI Listing

Publication Analysis

Top Keywords

grignard reagents
12
stabilization grignard
4
reagents pillar[5]arene
4
pillar[5]arene host
4
host schlenk
4
schlenk equilibria
4
equilibria grignard
4
grignard reactions
4
reactions grignard
4
reagents rmgx
4

Similar Publications

Herein, we report a method for the regioselective alkylation and phosphonation of quinoline C4-H via a BH-mediated nucleophilic addition of Turbo Grignard reagents and phosphine oxide anions to quinolines bearing different substituents, affording the 4-alkyl and 4-phosphoryl quinolines and tetrahydroquinolines after one-pot oxidation or reduction. The results indicate that coordination of the BH group can activate substrates toward a potential 1,4-dearomative addition and subtly control the regioselectivity by preventing the 1,2-dearomative addition.

View Article and Find Full Text PDF

Asymmetric synthesis relies on seamless transmission of stereochemical information from a chiral reagent/catalyst to a prochiral substrate. The disruption by substrates' structural changes presents a hurdle in innovating generality-oriented asymmetric catalysis. Here, we report a strategy for substrate adaptability by exploiting a fundamental physicochemical phenomenon-ion hydration, in developing remote desymmetrization to access P-stereogenic triarylphosphine oxides and sulfides.

View Article and Find Full Text PDF

Convenient lanthanum-mediated synthesis of bulky -alkyl amines from nitriles.

Chem Commun (Camb)

December 2024

Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada.

-alkyl amines can be conveniently prepared in one step from nitriles by a double addition of ethyl or propyl Grignard reagent mediated by a commercially available lanthanum chloride-lithium chloride complex solution. The reaction operates on a variety of benzonitriles, with several heterocyclic nitriles and an alkyl nitrile also being suitable substrates.

View Article and Find Full Text PDF

Synthesis of Consecutive All-Carbon Quaternary Centers via Three-Step Reactions.

Org Lett

December 2024

Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan.

Consecutive all-carbon quaternary centers were synthesized in three steps from the corresponding ketones. The three reactions were (1) Knoevenagel condensation of ketone and malononitrile to afford dicyanoalkene, (2) 1,4-addition reaction of a Grignard reagent to dicyanoalkene, and (3) oxidative transformation of a malononitrile moiety to an ester, thioester, amide, and α-nitroketone. This method was applied to the synthesis of 17α-methyl steroids with a good yield and excellent diastereoselectivity.

View Article and Find Full Text PDF

Development and Applications of an Amide Linchpin Reagent.

Angew Chem Int Ed Engl

November 2024

Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie Pvt, Ottawa, ON, K1N 6N5, Canada.

Linchpin reagents are building blocks that can be chemoselectively functionalized to afford products with a common, useful functional group. In this work, we describe the development and validation of the first amide linchpin reagent and demonstrate its use as a doubly electrophilic building block for the synthesis of a variety of amides, including challenging classes. The linchpin reagent was first functionalized via rhodium-catalyzed electrophilic amination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!