Zinc is essential for the functioning of many enzymes and plant processes and the malting process. Arbuscular mycorrhizal fungi (AMF) can improve zinc (Zn) uptake in the important cereal crop barley (Hordeum vulgare) on Zn-deficient soils. Here we investigated the impacts of Zn fertilisation and AMF on the yield and grain quality of malting barley cultivars. Five barley genotypes were inoculated or not with the AMF Rhizophagus irregularis, and grown in pots either fertilised with Zn or not. Measurements of Zn nutrition and yield were made for all cultivars. Further analyses of grain biochemical composition, including starch, β-glucan and arabinoxylan contents, and analysis of ATR-MIR spectra were made in two contrasting cultivars. Mycorrhizal colonisation generally resulted in decreased biomass, but increased grain dimensions and mean grain weight. Barley grain yield and biochemical qualities were highly variable between cultivars, and the ATR-MIR spectra revealed grain compositional differences between cultivars and AMF treatments. Mycorrhizal fungi can affect barley grain Zn concentration and starch content, but grain biochemical traits including β-glucan and arabinoxylan contents were more conserved by the cultivar, and unaffected by AMF inoculation. The ATR-MIR spectra revealed that there are other grain characteristics affected by AMF that remain to be elucidated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1071/FP19220 | DOI Listing |
Int J Mol Sci
December 2024
Key Laboratory of Agro-Environment in Tropics, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Research Centre for Modern Eco-Agriculture and Circular Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
, one of the world's most destructive invasive species, is known for causing significant ecological and economic harm. While extensive research has focused on its growth characteristics, secondary metabolites, and control measures, its chemical interactions with the environment-particularly the role of flavonoids in shaping soil microbial communities-remain underexplored. In this study, we identified and quantified ten flavonoids from root exudates using UPLC-MS, including Hispidulin, Isorhamnetin, and Mikanin.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
Intercropping has the potential to improve phosphorus (P) uptake and crop growth, but the potential benefits and relative contributions of root morphology and arbuscular mycorrhizal fungi (AMF) colonization are largely unknown for the intercropping of rice and soybean under dry cultivation. Both field and pot experiments were conducted with dry-cultivated rice ( L.) and soybean ( L.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
College of Agriculture, Henan University of Science and Technology, Luoyang, 471023, China; Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang, 471023, China; Henan Engineering Research Center of Human Settlements, Luoyang, 471023, China.
As an extension of plant root system, arbuscular mycorrhizal fungi (AMF) extraradical mycelium (ERM) can break the limitation of rhizosphere and play an important role in plant nutrient acquisition. However, it remains unclear whether ERM is smart enough to pick out nutrients while avoiding poison, or is unable to pick out nutrients and have to absorb poisons together. Therefore, the present study employed a compartment device to separate the mycelia from roots, aiming to explore the nutrient absorption pathways of mycelia in molybdenum (Mo) pollution soil after inoculation with AMF in maize and vetch plants.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Faculty of Science, Department of Biology, Ondokuz Mayis University, Samsun, 55139, Türkiye.
Interactions with mycorrhizal fungi are increasingly recognized as crucial ecological factors influencing orchids' distribution and local abundance. While some orchid species interact with multiple fungal partners, others show selectivity in their mycorrhizal associations. Additionally, orchids that share the same habitat often form relationships with different fungal partners, possibly to reduce competition and ensure stable coexistence.
View Article and Find Full Text PDFArbuscular mycorrhizal fungi (AMF, phylum Glomeromycota) are essential to plant community diversity and ecosystem functioning. However, increasing human land use represents a major threat to native AMF globally. Characterizing the loss of AMF diversity remains challenging because many taxa are undescribed, resulting in poor documentation of their biogeography and family-level disturbance sensitivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!