As a consequence of the obesity epidemic and increasing incidence of metabolic syndrome fatty liver disease now affects a large portion of the world’s population. Left untreated, fatty liver disease can progress to more severe pathologic conditions such as cirrhosis and liver cancer. In an effort to probe the pathophysiology of fatty liver disease and its progression, research over the last decade has led to the engineering of models of the liver to aid in drug discovery and study of liver pathophysiology. In this review, we discuss advances in modeling liver tissue and the latest developments in understanding disease etiology and treatment from the perspective of engineered models spanning from conventional planar, static monolayer cultures to those based on the more recently developed bioprinted and liver-on-a-chip platforms. These technologies promise to transform basic biological research, the pharmaceutical industry, and clinical medicine of the liver.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7012755 | PMC |
http://dx.doi.org/10.1002/hep.31106 | DOI Listing |
BMC Complement Med Ther
January 2025
School of Pharmaceutical Sciences, University Sains Malaysia, Gelugor, Malaysia.
Background: Nonalcoholic steatohepatitis (NASH) is a severe form of nonalcoholic fatty liver disease (NAFLD) characterized by damage and inflammation of hepatocytes. Some medicinal plants have shown antioxidant and anti-inflammatory effects on liver cells. We aimed to investigate the hepatoprotective effect of Heptex® capsules containing 200 mg of Dukung Anak (a powdered extract from aerial parts of Phyllanthus niruri) and 100 mg of Milk Thistle (a powdered extract from fruits of Silybum marianum) in patients with an apparent risk factor for NASH.
View Article and Find Full Text PDFSci Rep
January 2025
Xiyuan Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100091, China.
Identifying dependable prognostic indicators is essential for the efficient management of metabolic dysfunction-associated steatotic liver disease (MASLD). The index of hemoglobin glycation (HGI) has been demonstrated to be closely linked to the onset and advancement of MASLD. Currently, no studies have investigated the relationship between HGI and mortality rates among MASLD patients.
View Article and Find Full Text PDFBMJ Open
January 2025
Amsterdam UMC Locatie AMC, Amsterdam, Netherlands.
Background: The spectrum of metabolic dysfunction-associated steatotic liver disease (MASLD) is highly prevalent, affecting 30% of the world's population, with a significant risk of hepatic and cardiometabolic complications. Different stages of MASLD are accompanied by distinct gut microbial profiles, and several microbial components have been implicated in MASLD pathophysiology. Indeed, earlier studies demonstrated that hepatic necroinflammation was reduced in individuals with MASLD after allogenic faecal microbiota transplantation (FMT) from healthy donors on a vegan diet.
View Article and Find Full Text PDFComp Biochem Physiol C Toxicol Pharmacol
January 2025
College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China. Electronic address:
Olanzapine (OLZ) is widely used in the treatment of schizophrenia, and its metabolic side effects have garnered significant attention in recent years. Despite this, the specific side effects of OLZ and the underlying mechanisms remain inadequately understood. To address this gap, zebrafish (Danio rerio) were exposed to OLZ at concentrations of 35.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
January 2025
Ion Channel Biology Laboratory, AU-KBC Research Centre, Madras Institute of Technology Campus, Anna University, Chrompet, Chennai 600 044, Tamil Nadu, India. Electronic address:
Metabolic dysfunction-associated steatotic liver disease [MASLD] is a pervasive multifactorial health burden. Post-translational modifications [PTMs] of amino acid residues in protein domains demonstrate pivotal roles for imparting dynamic alterations in the cellular micro milieu. The crux of identifying novel druggable targets relies on comprehensively studying the etiology of metabolic disorders.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!