New ether-substituted poly(1,4-phenylene vinylene) (PPV) derivatives were synthesized via Horner-Emmons coupling. The structures of the monomers and the resultant oligomers were confirmed by H and C NMR spectroscopies. The molecular weights of the oligomers were characterized by gel permeation chromatography, giving the number-average and weight-average molecular weights and the corresponding polydispersity indices. Measurements of UV-vis absorption and fluorescence were used to characterize the optical properties of the oligomers. Estimation of the highest occupied molecular orbital and lowest unoccupied molecular orbital energy levels and other electrochemical characteristics of the oligomers were investigated by cyclic voltammetry. Dialkyl and dialkoxy PPV oligomers were also prepared and characterized following the same instrumental methods used for the ether-substituted oligomers, providing a known reference system to judge the performance of the new conjugated oligomers. Devices were fabricated to analyze the electroluminescent characteristics of the oligomers in organic light-emitting diodes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6941186 | PMC |
http://dx.doi.org/10.1021/acsomega.9b02396 | DOI Listing |
Adv Sci (Weinh)
January 2025
Guangdong-Hong Kong Joint Laboratory for Carbon Neutrality, Jiangmen Laboratory of Carbon Science and Technology, Jiangmen, Guangdong, 529199, P. R. China.
Giant dimeric acceptors (GDAs), a sub-type of acceptor materials for organic solar cells (OSCs), have garnered much attention due to the synergistic advantages of their monomeric and polymeric acceptors, forming a well-defined molecular structure with a giant molecular weight for high efficiency and stability. In this study, for the first time, two new GDAs, DYF-V and DY2F-V are designed and synthesized for OSC operation, by connecting one vinylene linker with the mono-/di-fluorinated end group on two Y-series monomers, respectively. After fluorination, both DYF-V and DY2F-V exhibit bathochromic absorption and denser packing modes due to the stronger intramolecular charge transfer effect and torsion-free backbones.
View Article and Find Full Text PDFChem Sci
January 2025
Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University Changsha 410083 P. R. China
The layer-stacking mode of a two-dimensional (2D) material plays a dominant role either in its topology or properties, but remains challenging to control. Herein, we developed alkali-metal ion-regulating synthetic control on the stacking structure of a vinylene-linked covalent triazine framework (termed spc-CTF) for improving hydrogen peroxide (HO) photoproduction. Upon the catalysis of EtONa in Knoevenagel polycondensation, a typical eclipsed stacking mode (spc-CTF-4@AA) was built, while a staggered one (spc-CTF-4@AB) was constructed using LiOH.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Normal University, Xi'an 710119, P. R. China.
High expression of drug efflux pump makes antibiotics ineffective against bacteria, leading to drug-resistant strains and even the emergence of "superbugs". Herein, we design and synthesize a dual functional o-nitrobenzene (NB)-modified conjugated oligo-polyfluorene vinylene (OPFV) photosensitizer, OPFV-NB, which can depress efflux pump activity and also possesses photodynamic therapy (PDT) for synergistically overcoming drug-resistant bacteria. Upon light irradiation, the OPFV-NB can produce aldehyde active groups to covalently bind outer membrane proteins, such as tolerant colicin (TolC), blocking drug efflux of bacteria.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University of Science and Technology Beijing, School of Chemistry and Biological Engineering, CHINA.
Designing and realizing new topologies represent one of the most important ways toward developing new structures and functionalities for molecule-based frameworks including SOFs, MOFs, and COFs. Herein, Aldol condensation between 5,10,15,20-tetrayl(tetrakis(([1,1':3',1''-terphenyl]-4,4''-dicarbaldehyde)))-porphyrin (TTEP) and 2,4,6-trimethyl-1,3,5-triazine (TMT) affords the vinylene-linked 3D covalent organic framework Por-COF-cya. Powder X-ray diffraction (PXRD) in combination with structural simulation reveals its high crystalline structure with an unprecedented cya topology in the molecule-based frameworks reported thus far.
View Article and Find Full Text PDFSmall
January 2025
Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, Grenoble, 38054, France.
With the increasing attention to energy storage solutions, a growing emphasis has been placed on environmentally compatible electrolytes tailored for lithium-ion batteries. This study investigates the surface behavior of Si wafers as model systems cycled with a fluorine-free electrolyte based on lithium bis(oxalato)borate (LiBOB), with and without the additive vinylene carbonate (VC). By utilizing operando X-ray reflectivity (XRR) and ex situ X-ray photoelectron spectroscopy (XPS), the intricate processes involved in solid electrolyte interphase (SEI) formation is elucidated, SiO/Si (de)lithiation, and the impact of the VC additive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!