Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cavitation phenomenon in dielectric fluids has been a recent topic of interest in theory and experiment. We study a dielectric fluid-nanoparticle system subjected to an external electric field using molecular dynamics simulations. Electric fields ranging from 0.042 to 0.25 V/Å are applied to a water and tin dioxide system. Cavitation is observed in simulations with both SPC/E water and the hydrogen bonding polarizable model. The cavitation onset time displays a stretched exponential relaxation response with respect to the applied electric field with an exponent = 0.423 ± 0.08. This is in accordance with the exact theoretical value for systems with long-ranged forces. Cavity growth rates are divided into two phases, a spherical growth phase and a cylindrical one. Both are reported as a function of the applied electric field. The structure of the electric field is analyzed both spatially and temporally.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6941173 | PMC |
http://dx.doi.org/10.1021/acsomega.9b00979 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!