Experimental data of adsorption of Cr(III) from aqueous solutions using a Colombian bentonite were acquired. The adsorbent material was characterized by XRF, XRD, and nitrogen physisorption. The effect dataset of pH, agitation speed, contact time and adsorbent amount on the removal of Cr(III) from an aqueous solution, using sodium bentonite was reported. A complete factorial design 3 with two replicates was used to estimate the influence of the adsorbent amount (0.50, 0.75 and 1.00 g) and pH (2.0, 3.0 and 4.0) on Cr(III) removal. Experimental dataset was evaluated with Design Expert® software using the response surface methodology (RSM) in order to obtain the interaction between the processed variables and the response. The optimal conditions for Cr(III) removal from aqueous solution of 50 mg/l were as follows: pH of 3.5, and the bentonite amount equals 0.96 g, keeping constant the contact time at 60 min and stirring speed at 250 rpm. The equilibrium isotherms at 25, 30 and 35 °C were fitted by means of the Langmuir and Freundlich models, and the respective parameters of such models were obtained. The maximum adsorption capacity of sodium bentonite to Cr(III) removal was between 6.44 ± 0.11 and 6.79 ± 0.21 mg/g in the temperature range from 25 to 35 °C. According to the experimental data acquired, sodium bentonite is an effective adsorbent for the Cr(III) removal from aqueous solutions, with the advantage of being a natural, abundant and low-cost material.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6940650 | PMC |
http://dx.doi.org/10.1016/j.dib.2019.105022 | DOI Listing |
Inorg Chem
January 2025
Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108, China.
Environmental concerns are driving the development of eco-friendly and effective methods for contaminant monitoring and remediation. In this study, a lanthanide porphyrin-based MOF with dual fluorescence sensing and photocatalytic properties was synthesized and applied for the detection and combined removal of Cr(VI) and ciprofloxacin (CIP). Using different excitation wavelengths, the material exhibited selective detection of Cr(VI) via fluorescence quenching and CIP through fluorescence enhancement.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Department of Chemistry, Tamkang University, New Taipei City, 25137, Taiwan. Electronic address:
Background: Trivalent chromium (Cr(III)) and its highly soluble carboxyl complexes, often discharged into the environment by industries such as electroplating, leather tanning, and textile manufacturing, present severe risks to human health and ecosystems due to their high toxicity. These compounds are notoriously difficult to detect and remove during wastewater treatment, as they can persist in aqueous environments. Consequently, there is a pressing need for the development of simple, cost-effective, and reliable methods for their detection, which can improve monitoring, facilitate timely interventions, and enhance environmental protection efforts.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran, Iran; Modares Environmental Research Institute, Tarbiat Modares University, Tehran, Iran. Electronic address:
The wastewater from various industries contaminated with heavy metals poses significant environmental challenges. Biosorption has emerged as a widely used method for removing heavy metals from industrial wastewater. Pseudomonas atacamensis M7D1 is known to produce polysaccharides, but the potential of its polysaccharides as an adsorbent for heavy metal removal still needs to be explored.
View Article and Find Full Text PDFEnviron Technol
December 2024
School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, People's Republic of China.
J Colloid Interface Sci
April 2025
Department of Environmental Science and Engineering, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
Ferrous oxalate (FeCO)-based composite has been recognized as an eminent catalyst for Cr(III)-ethylenediamine tetraacetic acid (Cr(III)-EDTA) decomplexation. However, their practical application has been limited by low cycling capacity and an ambiguous mechanism. In this research, a composite catalyst consisting of biotite loaded with nano FeCO (CFS90) was prepared directly from iron-containing silicate tailing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!