Experimental data of adsorption of Cr(III) from aqueous solution using a bentonite: Optimization by response surface methodology.

Data Brief

Department of Physic and Chemistry, Universidad Nacional de Colombia sede Manizales, Campus La Nubia, km 7 vía al Aeropuerto, AA 127 Manizales, Colombia.

Published: February 2020

Experimental data of adsorption of Cr(III) from aqueous solutions using a Colombian bentonite were acquired. The adsorbent material was characterized by XRF, XRD, and nitrogen physisorption. The effect dataset of pH, agitation speed, contact time and adsorbent amount on the removal of Cr(III) from an aqueous solution, using sodium bentonite was reported. A complete factorial design 3 with two replicates was used to estimate the influence of the adsorbent amount (0.50, 0.75 and 1.00 g) and pH (2.0, 3.0 and 4.0) on Cr(III) removal. Experimental dataset was evaluated with Design Expert® software using the response surface methodology (RSM) in order to obtain the interaction between the processed variables and the response. The optimal conditions for Cr(III) removal from aqueous solution of 50 mg/l were as follows: pH of 3.5, and the bentonite amount equals 0.96 g, keeping constant the contact time at 60 min and stirring speed at 250 rpm. The equilibrium isotherms at 25, 30 and 35 °C were fitted by means of the Langmuir and Freundlich models, and the respective parameters of such models were obtained. The maximum adsorption capacity of sodium bentonite to Cr(III) removal was between 6.44 ± 0.11 and 6.79 ± 0.21 mg/g in the temperature range from 25 to 35 °C. According to the experimental data acquired, sodium bentonite is an effective adsorbent for the Cr(III) removal from aqueous solutions, with the advantage of being a natural, abundant and low-cost material.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6940650PMC
http://dx.doi.org/10.1016/j.dib.2019.105022DOI Listing

Publication Analysis

Top Keywords

criii removal
16
experimental data
12
criii aqueous
12
aqueous solution
12
sodium bentonite
12
data adsorption
8
adsorption criii
8
response surface
8
surface methodology
8
aqueous solutions
8

Similar Publications

Environmental concerns are driving the development of eco-friendly and effective methods for contaminant monitoring and remediation. In this study, a lanthanide porphyrin-based MOF with dual fluorescence sensing and photocatalytic properties was synthesized and applied for the detection and combined removal of Cr(VI) and ciprofloxacin (CIP). Using different excitation wavelengths, the material exhibited selective detection of Cr(VI) via fluorescence quenching and CIP through fluorescence enhancement.

View Article and Find Full Text PDF

Liquid crystal sensor for Cr(III)-citrate detection via interfacial coagulation.

Anal Chim Acta

February 2025

Department of Chemistry, Tamkang University, New Taipei City, 25137, Taiwan. Electronic address:

Background: Trivalent chromium (Cr(III)) and its highly soluble carboxyl complexes, often discharged into the environment by industries such as electroplating, leather tanning, and textile manufacturing, present severe risks to human health and ecosystems due to their high toxicity. These compounds are notoriously difficult to detect and remove during wastewater treatment, as they can persist in aqueous environments. Consequently, there is a pressing need for the development of simple, cost-effective, and reliable methods for their detection, which can improve monitoring, facilitate timely interventions, and enhance environmental protection efforts.

View Article and Find Full Text PDF

The wastewater from various industries contaminated with heavy metals poses significant environmental challenges. Biosorption has emerged as a widely used method for removing heavy metals from industrial wastewater. Pseudomonas atacamensis M7D1 is known to produce polysaccharides, but the potential of its polysaccharides as an adsorbent for heavy metal removal still needs to be explored.

View Article and Find Full Text PDF
Article Synopsis
  • Industrial wastewater contains toxic metals, and in this study, citric acid-modified MOF-808 was developed for effectively removing Cr(III) and Cr(III)-EDTA.
  • MOF-808-CA demonstrated strong adsorption capabilities with specific adsorptions of 40.46 mg/g for Cr(III) and 17.03 mg/g for Cr(III)-EDTA at pH 4.0.
  • The adsorption mechanisms involved both electrostatic interactions and surface complexation for Cr(III), while hydrogen bonding and complexation played key roles for Cr(III)-EDTA, highlighting MOF-808-CA's potential in treating contaminated wastewater.
View Article and Find Full Text PDF

Ferrous oxalate (FeCO)-based composite has been recognized as an eminent catalyst for Cr(III)-ethylenediamine tetraacetic acid (Cr(III)-EDTA) decomplexation. However, their practical application has been limited by low cycling capacity and an ambiguous mechanism. In this research, a composite catalyst consisting of biotite loaded with nano FeCO (CFS90) was prepared directly from iron-containing silicate tailing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!