C Metabolic Flux Analysis (C-MFA) involves the quantification of isotopic enrichment in cellular metabolites and fitting the resultant data to the metabolic network model of the organism. Coverage and resolution of the resultant flux map depends on the total number of metabolites and fragments in which C enrichment can be quantified accurately. Experimental techniques for tracking C enrichment are evolving rapidly and large volumes of data are now routinely generated through the use of Liquid Chromatography coupled with High-Resolution Mass Spectrometry (HR-LC/MS). Therefore, the current manuscript is focused on the challenges in high-throughput analyses of such large datasets. Current C-MFA studies often have to rely on the targeted quantification of a small subset of metabolites, thereby leaving a large fraction of the data unexplored. A number of public domain software tools have been reported in recent years for the untargeted quantitation of isotopic enrichment. However, the suitability of their application across diverse datasets has not been investigated. Here, we test the software tools XCMS, DynaMet, geoRge, and HiResTEC with three diverse datasets. The tools provided a global, untargeted view of C enrichment in metabolites in all three datasets and a much-needed automation in data analysis. Some inconsistencies were observed in results obtained from the different tools, which could be partially ascribed to the lack of baseline separation and potential mass conflicts. After removing the false positives manually, isotopic enrichment could be quantified reliably in a large repertoire of metabolites. Of the software tools explored, geoRge and HiResTEC consistently performed well for the untargeted analysis of all datasets tested.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6940703 | PMC |
http://dx.doi.org/10.1016/j.mec.2019.e00120 | DOI Listing |
Discov Oncol
January 2025
Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China.
Nucleotide-binding oligomerization domain protein 1 (NOD1) is one of the innate immune receptors that has been associated with tumorigenesis and abnormally expressed in various cancers. However, the role of NOD1 in Glioblastoma Multiforme (GBM) has not been investigated. We used the Tumor Immune Estimate Resource (TIMER) database to compare the differential expression of NOD1 in various tumors.
View Article and Find Full Text PDFInt Urol Nephrol
January 2025
Department of Colorectal Surgery, Heliopolis Hospital, São Paulo, SP, Brazil.
Purpose: Locally advanced colorectal tumors frequently invade adjacent organs, particularly the urinary bladder in the sigmoid colon and upper rectum, complicating multivisceral resections. This study compared postoperative outcomes of partial cystectomy (PC) and total cystectomy (TC) in patients with locally advanced colorectal cancer.
Methods: A systematic review was conducted in PubMed, Scopus, Central Register of Clinical Trials, and Web of Science for studies published up to November 2024.
J Chem Inf Model
January 2025
Sino-Finland Joint AI Laboratory for Child Health of Zhejiang Province, Hangzhou 310052, China.
PACKMOL is a widely utilized molecular modeling tool within the computational chemistry community. However, its tremendous advantages have been impeded by the longstanding lack of a robust open-source graphical user interface (GUI) that integrates parameter settings with the visualization of molecular and geometric constraints. To address this limitation, we have developed PACKMOL-GUI, a VMD plugin that leverages the dynamic extensibility of the Tcl/Tk toolkit.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Department of Convergent Bioscience and Informatics, College of Bioscience and Biotechnology, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea.
Large genetic variants can be generated via homologous recombination (HR), such as polymerase theta-mediated end joining (TMEJ) or single-strand annealing (SSA). Given that these HR-based mechanisms leave specific genomic signatures, we developed GDBr, a genomic signature interpretation tool for DNA double-strand break repair mechanisms using high-quality genome assemblies. We applied GDBr to a draft human pangenome reference.
View Article and Find Full Text PDFJ Comput Chem
January 2025
Departmento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica, Chile.
Data analysis is a major task for Computational Chemists. The diversity of modeling tools currently available in Computational Chemistry requires the development of flexible analysis tools that can adapt to different systems and output formats. As a contribution to this need, we report the implementation of goChem, a versatile open-source library for multiscale analysis of computational chemistry data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!