Dynamics, temperature, chemistry, and dust: Ingredients for a self-consistent AGB wind.

Proc Int Astron Union

Institute of Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium.

Published: August 2018

Understanding Asymptotic Giant Branch (AGB) stars is important as they play a vital role in the chemical life cycle of galaxies. AGB stars are in a phase of their life time where they have almost ran out of fuel and are losing vast amounts of material to their surroundings, via stellar winds. As this is an evolutionary phase of low mass stars, almost all stars go through this phase making them one of the main contributors to the chemical enrichment of galaxies. It is therefore important to understand what kind of material is being lost by these stars, and how much and how fast. This work summarises the steps we have taken towards developing a self-consistent AGB wind model. We improve on current models by firstly coupling chemical and hydrodynamical evolution, and secondly by upgrading the nucleation theory framework to investigate the creation of TiO, SiO, MgO, and AlO clusters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6944506PMC
http://dx.doi.org/10.1017/S1743921318005094DOI Listing

Publication Analysis

Top Keywords

self-consistent agb
8
agb wind
8
agb stars
8
stars phase
8
stars
5
dynamics temperature
4
temperature chemistry
4
chemistry dust
4
dust ingredients
4
ingredients self-consistent
4

Similar Publications

Dynamics, temperature, chemistry, and dust: Ingredients for a self-consistent AGB wind.

Proc Int Astron Union

August 2018

Institute of Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium.

Understanding Asymptotic Giant Branch (AGB) stars is important as they play a vital role in the chemical life cycle of galaxies. AGB stars are in a phase of their life time where they have almost ran out of fuel and are losing vast amounts of material to their surroundings, via stellar winds. As this is an evolutionary phase of low mass stars, almost all stars go through this phase making them one of the main contributors to the chemical enrichment of galaxies.

View Article and Find Full Text PDF

In this paper, the vertical excitation energies of total of 32 states of N(2)O(4) including the lowest two singlet states and two triplet states of each of the A(g), B(3u), B(2u), B(1g), B(1u), B(2g), B(3g), and A(u) symmetries were calculated at multiconfigurational self-consistent field (MCSCF) and the multireference internally contracted configuration interaction (MRCI) levels of theory on the active space (15o,16e) with aug-cc-pVDZ basis set. The potential energy curves of the eight singlet states(1 (1)A(g), 1 (1)B(3u), 1 (1)B(2u), 1 (1)B(1g), 1 (1)B(1u), 1 (1)B(2g), 1 (1)B(3g), and 1 (1)A(u)) and eight triplet states (1 (3)A(g), 1 (3)B(3u), 1 (3)B(2u), 1 (3)B(1g), 1 (3)B(1u), 1 (3)B(2g), 1 (3)B(3g), and 1 (3)A(u)) were calculated at MCSCF and MRCI levels of theory on the active space (15o,16e) with aug-cc-pVDZ basis set along the N-N distance. The vertical excitation energies of 1 (1)B(3u), 1 (1)B(2u), and 1 (1)B(1u) states with nonzero transition moment are 4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!