Introduction: Nicotiana tabacum is a plant model intensively used in the bio-engineering pharmaceutical industry as a platform to produce drugs and therapeutic agents. Currently, no information regarding the non-targeted metabolome of transgenic tobacco containing recombinant regulatory sequences is available.
Objective: To compare the proton nuclear magnetic resonance ( H-NMR) metabolomics profiling of a recombinant Nicotiana tabacum strain containing a promoter of a sesquiterpene cyclase from Capsicum annuum driving GUS expression, versus wild-type samples. Methodology The non-targeted H-NMR metabolome was obtained and processed by principal component analysis (PCA) and orthogonal projection to latent structures discriminant analysis (OPLS-DA). The differential metabolites were quantified by quantitative NMR.
Results: PCA and OPLS-DA revealed 37 metabolites including 16 discriminant compounds for transgenic samples. Ethanol (0.4 mg g ), the main differential compound, was exclusively detected in transgenic tobacco; however, high levels of formate (0.28 mg g ) and acetate (0.3 mg g ) were simultaneously observed in the same group of samples. Cembratriene-4,6-diol, an antitumour and neuroprotective compound, and capsidiol, a known phytoalexin, increased by about 30% in transgenic samples. In addition, the endogenous levels of the antioxidant caffeoylquinic acid isomers increased by 50% in comparison to those of wild-type tobaccos.
Conclusion: Our results support the occurrence of metabolic differences between wild type and transgenic tobacco containing a promoter of a Capsicum sesquiterpene cyclase gene. Interestingly, the recombinant transgenic strain studied accumulated high amounts of added value compounds with biological activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/pca.2911 | DOI Listing |
J Agric Food Chem
December 2024
CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
BcABA3 is an unusual sesquiterpene synthase that lacks the conserved DDxxD and DTE/NSE motifs. Despite this, it can catalyze the conversion of farnesyl diphosphate to 2Z,4E-α-ionylideneethane. We used structure prediction, multiscale simulations, and site-directed mutagenesis experiments to investigate BcABA3 and its catalytic mechanism.
View Article and Find Full Text PDFJ Agric Food Chem
November 2024
Provincial Key Laboratory of Agrobiology and Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu P. R. China.
Org Lett
August 2024
Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, Marburg 35037, Germany.
The great variety and fascinating complexity of terpenoid skeletons are achieved through different cyclizations catalyzed by terpene cyclases. Here, we report a sesquiterpene cyclase (MfdS) from for the formation of malfilanol D, a member of the group of biochemically less investigated sesquiterpenes with a bicyclo[5.4.
View Article and Find Full Text PDFJ Fungi (Basel)
July 2024
Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China.
Terpenoids are structurally diverse natural products that have been widely used in the pharmaceutical, food, and cosmetic industries. Research has shown that fungi produce a variety of terpenoids, yet fungal terpene synthases remain not thoroughly explored. In this study, the gene, a crucial component of the terpene synthetic pathway, was isolated from HB20111 through genome mining.
View Article and Find Full Text PDFChembiochem
December 2024
School of Chemistry, Main Building, Cardiff University, Park Place, Cardiff, CF10 3AT, United Kingdom.
The high-fidelity sesquiterpene cyclase (-)-germacradien-4-ol synthase (GdolS) converts farnesyl diphosphate into the macrocyclic alcohol (-)-germacradien-4-ol. Site-directed mutagenesis was used to decipher the role of key residues in the water control mechanism. Replacement of Ala176, located in the G1/2 helix, with non-polar aliphatic residues of increasing size (valine, leucine, isoleucine and methionine) resulted in the accumulation of the non-hydroxylated products germacrene A and germacrene D.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!