Brain-derived neurotrophic factor precursor (proBDNF) has been reported to strengthen the dysfunction of monocytes/macrophages in animal studies. However, it is still unknown the roles of proBDNF in the dysfunction of monocytes in the inflammatory diseases in humans. In the present study, we showed that proBDNF and pan neurotrophic receptor p75 were significantly upregulated in monocytes from healthy donors (HD) after lipopolysaccharide treatment. Exogenous proBDNF treatment upregulated CD40 and proinflammatory cytokines expression in monocytes including interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α. In Stanford type-A acute aortic dissection (AAD) patients, proBDNF was upregulated in CD14 CD163 CX3CR1 M2- but not CD14 CD68 CCR2 M1-like monocytes. In addition, sera from AAD patients activated gene expression of proinflammatory cytokines in cultured PBMCs from HD, which was attenuated by proBDNF monoclonal antibody (Ab-proB) treatment. These findings suggested that upregulation of proBDNF in M2-like monocytes may contribute to the proinflammatory response in the AAD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1096/fj.201901905RR | DOI Listing |
Brain Res
December 2024
Ningxia Clinical Research Institute, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, PR China.
The study aimed to examine the effects of Quetiapine, an atypical antipsychotic medication with purported neuroprotective qualities, on cognitive function and synaptic plasticity in epileptic rats. This investigation also sought to elucidate the mechanisms by which quetiapine influences the activity of the cyclic adenylate response element binding protein (CREB)/brain-derived neurotrophic factor (BDNF) signaling pathway and metallomatrix proteinase-9 (MMP9) expression in the context of epilepsy. The epileptic model was induced in rats through the administration of pilocarpine, with normal rats serving as the control group.
View Article and Find Full Text PDFCNS Neurosci Ther
December 2024
Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia.
Brain-derived neurotrophic factor (BDNF) is a neurotrophin, acting as a neurotrophic signal and neuromodulator in the central nervous system (CNS). BDNF is synthesized from its precursor proBDNF within the CNS and peripheral tissues. Through activation of NTRK2/TRKB (neurotrophic receptor tyrosine kinase 2), BDNF promotes neuronal survival, synaptic plasticity, and neuronal growth, whereas it inhibits microglial activation and the release of pro-inflammatory cytokines.
View Article and Find Full Text PDFSci Rep
November 2024
Department of Neurosurgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430000, China.
Post-stroke depression (PSD) affects millions of patients who suffer cerebral stroke. However, the molecular mechanisms and pathophysiology are poorly understood. Previous studies have shown that exosomes have been proven to be involved in neuropsychiatric disorders such as stroke and post-stroke depression in neurotransmitter release, neuronal remodeling, and neuron angiogenesis.
View Article and Find Full Text PDFMol Neurobiol
November 2024
Discipline of Pharmaceutical Sciences, School of Health Science, University of KwaZulu-Natal, Durban, South Africa.
This study investigates the association between serum mature brain-derived neurotrophic factor (mBDNF), its precursor proBDNF, and neurocognitive function in ART-naïve adults with HIV in sub-Saharan Africa, exploring the distinct roles of these neurotrophic factors in cognitive health. This cross-sectional analysis utilized stored baseline serum samples and neuropsychological test data from participants in the AIDS Clinical Trials Group (ACTG) A5199 study in the Johannesburg and Harare sites. Serum concentrations of mBDNF and proBDNF were quantified using ELISA.
View Article and Find Full Text PDFReg Anesth Pain Med
November 2024
Department of Anesthesiology and Pain Management, MUMC+, Maastricht, The Netherlands.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!