Purpose: The small peptide TMTP1 (NVVRQ) has been proved to target a series of highly metastatic tumor cells. The aim of this study was to develop a new agent based on TMTP1 conjugated with Evans blue (EB), to increase tumor uptake and modify the pharmacokinetic characteristics of the resulting radiolabeled agent.
Procedures: DOTA-EB-TMTP1 was prepared through conventional solid-phase peptide synthesis chemistry. Then, it was successfully labeled with Cu-64 to obtain [Cu]DOTA-EB-TMTP1. The tumor targeting properties were evaluated in vivo using 143B xenografts.
Results: DOTA-EB-TMTP1 was successfully labeled with Cu-64 in a yield of 87.3 ± 5.2 %. In a small animal positron emission tomography/X-ray computed tomography (PET/CT) study in osteosarcoma 143B xenograft mice, [Cu]DOTA-EB-TMTP1 was found to rapidly accumulate in the tumor tissue. The tumor uptake increased over time and reached a plateau of 6.50 ± 0.88 % ID/g 8 h after tail vein injection. The radioactivity remained in the tumor tissue 48 h postinjection with a negligible decrease.
Conclusions: Overall, the introduction of the EB motif to TMTP1 significantly changed its pharmacokinetics in vivo, and this strategy fulfills the purpose of prolonging the blood circulation and enhancing the tumor uptake. [Cu]DOTA-EB-TMTP1 is a promising agent for osteosarcoma targeting. Moreover, our study highlights that DOTA-EB-TMTP1 is a good candidate for labeling with different radionuclides for potential theranostic applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7959509 | PMC |
http://dx.doi.org/10.1007/s11307-019-01468-6 | DOI Listing |
Drug Resist Updat
January 2025
Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China. Electronic address:
Radioresistance remains a great challenge for radiotherapy in the treatment of glioblastoma (GBM). PD-L1 expression is a key contributor to radioresistance and immune escape in GBM. The lack of effective methods to monitor the change of PD-L1 during radiotherapy in patients limits timely intervention and management of the resistance.
View Article and Find Full Text PDFCurr Med Chem
January 2025
Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, 384012, India.
Aims: This study aimed to develop Imatinib Mesylate (IMT)-loaded Poly Lactic-co-Glycolic Acid (PLGA)-D-α-tocopheryl polyethylene glycol succinate (TPGS)- Polyethylene glycol (PEG) hybrid nanoparticles (CSLHNPs) with optimized physicochemical properties for targeted delivery to glioblastoma multiforme.
Background: Glioblastoma multiforme (GBM) is the most destructive type of brain tumor with several complications. Currently, most treatments for drug delivery for this disease face challenges due to the poor blood-brain barrier (BBB) and lack of site-specific delivery.
EClinicalMedicine
January 2025
Department of Clinical Genetics, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.
Background: Female Lynch syndrome carriers have an increased risk of developing endometrial cancer. Regardless, research on endometrial carcinoma tumorigenesis is scarce and no uniform, evidence-based gynaecological management guidelines exist. We therefore described gynaecological surveillance and surgery outcomes in a nation-wide Lynch syndrome cohort.
View Article and Find Full Text PDFDrug Des Devel Ther
January 2025
Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia.
Purpose: Phytosome technology, an advanced lipid-based delivery system, offers a promising solution for enhancing the bioavailability and therapeutic efficacy of secondary metabolites, particularly in cancer treatment. These metabolites, such as flavonoids, terpenoids, and alkaloids, possess significant anticancer potential but are often limited by poor solubility and low absorption. This review aims to investigate how phytosome encapsulation improves the pharmacokinetic profiles and anticancer effectiveness of these bioactive compounds.
View Article and Find Full Text PDFScientifica (Cairo)
January 2025
Department of Food and Nutritional Sciences, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo 1128610, Japan.
Although glucosamine (GlcN) exhibits antitumor effects, its mechanism of action remains controversial. Additionally, its impact on hepatocellular carcinoma (HCC) is not well understood. This study aimed to investigate the antitumor effects of GlcN and its underlying mechanism in a mouse HCC cell line, Hepa1-6.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!