Purpose: Electrical stimulation of the whole hypoglossal nerve (HGp-ES) has been demonstrated to enlarge the pharynx and improve pharyngeal stability and patency to airflow in all animals studied, but not in humans. The present study was undertaken to better understand the effect of HGp-ES on the human pharynx.

Methods: Eight patients with obstructive sleep apnea who had implanted stimulators with electrodes positioned proximally on the main truck of the hypoglossus were studied under propofol sedation. Pharyngoscopy and air flow measurements at multiple levels of continuous positive airway pressure (CPAP) were performed before and during Hgp-ES.

Results: HGp-ES that activates both tongue protrusors and retractors narrowed the pharyngeal lumen at the site of collapse (velopharynx in all subjects) from 1.38 ± 0.79 to 0.75 ± 0.44 cm, p < 0.05 (measured at mid-range of CPAP levels) and lowered airflow (from 8.88 ± 2.08 to 6.69 ± 3.51 l/min, p < 0.05). Changes in critical pressure (Pcrit) and velopharyngeal compliance were not significant, but oropharyngeal compliance decreased (from 0.43 ± 0.18 to 0.32 ± 0.13 cm/cmH2O, p < 0.05). No correlation was found between the pattern of change in luminal shape (determined as the ratio of a-p vs. lateral diameter when lowering CPAP) or changes in cross-sectional area and airflow during Hgp-ES.

Conclusions: Our findings indicate that human retractors dominate when stimulated together with the protrusors during HGp-ES. While co-activation of retractors may be beneficial, it should be limited. We speculate that exercises that augment protrusor force may improve the response to hypoglossal stimulation. The exclusion of patients with concentric pharyngeal obstruction should be re-evaluated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9508899PMC
http://dx.doi.org/10.1007/s11325-019-02011-1DOI Listing

Publication Analysis

Top Keywords

electrical stimulation
8
stimulation hypoglossal
8
hypoglossal nerve
8
patients obstructive
8
obstructive sleep
8
sleep apnea
8
nerve patients
4
apnea purpose
4
purpose electrical
4
hgp-es
4

Similar Publications

Objectives: Trunk control involves multiple brain regions related to motor control systems. Therefore, patients with central nervous system (CNS) disorders frequently exhibit impaired trunk control, decreasing their activities of daily living (ADL). Although some therapeutic interventions for trunk impairments have been effective, their general effects on CNS disorders remain unclear.

View Article and Find Full Text PDF

Utilizing Tissues Self-Assembled in Fiber Optic-Based "Chinese Guzheng Strings" for Contractility Sensing and Drug Efficacy Evaluation: A Practical Approach.

Small

January 2025

State Key Laboratory of Biocatalysis and Enzyme Engineering, Stem Cells and Tissue Engineering Manufacture Center, School of Life Science, Hubei University, Wuhan, Hubei, 430062, China.

Recent advances in drug design and compound synthesis have highlighted the increasing need for effective methods of toxicity evaluation. A specialized force sensor, known as the light wavelength-encoded "Chinese guzheng" is developed. This innovative sensor is equipped with optical fiber strings and utilizes a wavelength-encoded fiber Bragg grating (FBG) that is chemically etched to reduce its diameter.

View Article and Find Full Text PDF

Current understanding and prospects for targeting neurogenesis in the treatment of cognitive impairment.

Neural Regen Res

January 2025

Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.

Adult hippocampal neurogenesis is linked to memory formation In the adult brain, with new neurons in the hippocampus exhibiting greater plasticity during their immature stages compared to mature neurons. Abnormal adult hippocampal neurogenesis is closely associated with cognitive impairment in central nervous system diseases. Targeting and regulating adult hippocampal neurogenesis have been shown to improve cognitive deficits.

View Article and Find Full Text PDF

Objective: Inclusion of individualised electrical conductivities of head tissues is crucial for the accuracy of electrical source imaging techniques based on electro/magnetoencephalography and the efficacy of transcranial electrical stimulation. Parametric electrical impedance tomography (pEIT) is a method to cheaply and non-invasively estimate them using electrode arrays on the scalp to apply currents and measure the resulting potential distribution. Conductivities are then estimated by iteratively fitting a forward model to the measurements, incurring a prohibitive computational cost that is generally lowered at the expense of accuracy.

View Article and Find Full Text PDF

Objective: A motor imagery (MI)-based brain-computer interface (BCI) enables users to engage with external environments by capturing and decoding electroencephalography (EEG) signals associated with the imagined movement of specific limbs. Despite significant advancements in BCI technologies over the past 40 years, a notable challenge remains: many users lack BCI proficiency, unable to produce sufficiently distinct and reliable MI brain patterns, hence leading to low classification rates in their BCIs. The objective of this study is to enhance the online performance of MI-BCIs in a personalized, biomarker-driven approach using transcranial alternating current stimulation (tACS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!