To date, effective control over the electrochemical reduction of CO to multicarbon products (C ≥ 2) has been very challenging. Here, we report a design principle for the creation of a selective yet robust catalytic interface for heterogeneous electrocatalysts in the reduction of CO to C oxygenates, demonstrated by rational tuning of an assembly of nitrogen-doped nanodiamonds and copper nanoparticles. The catalyst exhibits a Faradaic efficiency of ~63% towards C oxygenates at applied potentials of only -0.5 V versus reversible hydrogen electrode. Moreover, this catalyst shows an unprecedented persistent catalytic performance up to 120 h, with steady current and only 19% activity decay. Density functional theory calculations show that CO binding is strengthened at the copper/nanodiamond interface, suppressing CO desorption and promoting C production by lowering the apparent barrier for CO dimerization. The inherent compositional and electronic tunability of the catalyst assembly offers an unrivalled degree of control over the catalytic interface, and thereby the reaction energetics and kinetics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41565-019-0603-y | DOI Listing |
Sci Rep
December 2024
Division of Blood Components and Devices, Center for Biologics Evaluation and Research, FDA, Silver Spring, MD, 20993, USA.
Added safety measures coupled with the development and use of pathogen reduction technologies (PRT) significantly reduces the risk of transfusion-transmitted infections (TTIs) from blood products. Current approved PRTs utilize chemical and/or UV-light based inactivation methods. While the effectiveness of these PRTs in reducing pathogens are well documented, these can cause tolerable yet unintended consequences on the quality and efficacy of the transfusion products.
View Article and Find Full Text PDFSci Rep
December 2024
School of Medicine, Yichun University, Yichun, 336000, China.
Iron oxide nanoparticles (IONPs) have the potential to be utilized in a multitude of fields, including biomedicine. Consequently, the potential health risks associated with their use must be carefully considered. Most biosafety evaluations of IONPs have focused on examining the impact of the material's distinctive physicochemical attributes.
View Article and Find Full Text PDFSci Rep
December 2024
School of Public Administration, Guangzhou University, Guangzhou, 510006, China.
With the accelerated urbanization and economic development in Northwest China, the efficiency of urban wastewater treatment and the importance of water quality management have become increasingly significant. This work aims to explore urban wastewater treatment and carbon reduction mechanisms in Northwest China to alleviate water resource pressure. By utilizing online monitoring data from pilot systems, it conducts an in-depth analysis of the impacts of different wastewater treatment processes on water quality parameters.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Earth and Planetary Sciences, University of California, Riverside, CA, 92521, USA.
The Salton Sea (SS), California's largest inland lake at 816 square kilometers, formed in 1905 from a levee breach in an area historically characterized by natural wet-dry cycles as Lake Cahuilla. Despite more than a century of untreated agricultural drainage inputs, there has not been a systematic assessment of nutrient loading, cycling, and associated ecological impacts at this iconic waterbody. The lake is now experiencing unprecedented degradation, particularly following the 2003 Quantification Settlement Agreement-the largest agricultural-to-urban water transfer in the United States.
View Article and Find Full Text PDFJ Ethnopharmacol
December 2024
Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, PR China, 230038; Institute of Surgery, Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, PR China, 230038. Electronic address:
Ethnopharmacological Relevance: Type 2 diabetes mellitus (T2DM) is a metabolic disease that can lead to complications affecting multiple organs, including the liver. Gegen Qinlian Decoction (GQD) has demonstrated considerable efficacy in the management of T2DM and its complications in accordance with the tenets of modern Chinese medicine. However, the molecular mechanism by which GQD alleviates diabetic liver injury is unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!