Extensive research over the past decades has identified integrins to be the primary transmembrane receptors that enable cells to respond to external mechanical cues. We reveal here a mechanism whereby syndecan-4 tunes cell mechanics in response to localized tension via a coordinated mechanochemical signalling response that involves activation of two other receptors: epidermal growth factor receptor and β1 integrin. Tension on syndecan-4 induces cell-wide activation of the kindlin-2/β1 integrin/RhoA axis in a PI3K-dependent manner. Furthermore, syndecan-4-mediated tension at the cell-extracellular matrix interface is required for yes-associated protein activation. Extracellular tension on syndecan-4 triggers a conformational change in the cytoplasmic domain, the variable region of which is indispensable for the mechanical adaptation to force, facilitating the assembly of a syndecan-4/α-actinin/F-actin molecular scaffold at the bead adhesion. This mechanotransduction pathway for syndecan-4 should have immediate implications for the broader field of mechanobiology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7260055 | PMC |
http://dx.doi.org/10.1038/s41563-019-0567-1 | DOI Listing |
Matrix Biol
August 2024
Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, United States; Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, 1025 Walnut Street, Suite 501 College Bldg., Philadelphia, PA 19107, United States. Electronic address:
Syndecan 4 (SDC4), a cell surface heparan sulfate proteoglycan, is known to regulate matrix catabolism by nucleus pulposus cells in an inflammatory milieu. However, the role of SDC4 in the aging spine has never been explored. Here we analyzed the spinal phenotype of Sdc4 global knockout (KO) mice as a function of age.
View Article and Find Full Text PDFJ Biol Chem
November 2022
i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal. Electronic address:
Nat Mater
June 2020
Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, UK.
PLoS One
November 2017
Institute of Biology, Savaria Campus, Eötvös Lorand University, Szombathely, Hungary.
The small GTPases of the Rho family comprising RhoA, Rac1 and Cdc42 function as molecular switches controlling several essential biochemical pathways in eukaryotic cells. Their activity is cycling between an active GTP-bound and an inactive GDP-bound conformation. The exchange of GDP to GTP is catalyzed by guanine nucleotide exchange factors (GEFs).
View Article and Find Full Text PDFJ Cell Biol
September 2015
Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark Biotech Research and Innovation Center, University of Copenhagen, 2200 Copenhagen, Denmark
Transmembrane heparan sulfate proteoglycans regulate multiple aspects of cell behavior, but the molecular basis of their signaling is unresolved. The major family of transmembrane proteoglycans is the syndecans, present in virtually all nucleated cells, but with mostly unknown functions. Here, we show that syndecans regulate transient receptor potential canonical (TRPCs) channels to control cytosolic calcium equilibria and consequent cell behavior.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!