Diffuse brain infiltration by glioma cells causes detrimental disease progression, but its multicellular coordination is poorly understood. We show here that glioma cells infiltrate the brain collectively as multicellular networks. Contacts between moving glioma cells are adaptive epithelial-like or filamentous junctions stabilized by N-cadherin, β-catenin and p120-catenin, which undergo kinetic turnover, transmit intercellular calcium transients and mediate directional persistence. Downregulation of p120-catenin compromises cell-cell interaction and communication, disrupts collective networks, and both the cadherin and RhoA binding domains of p120-catenin are required for network formation and migration. Deregulating p120-catenin further prevents diffuse glioma cell infiltration of the mouse brain with marginalized microlesions as the outcome. Transcriptomics analysis has identified p120-catenin as an upstream regulator of neurogenesis and cell cycle pathways and a predictor of poor clinical outcome in glioma patients. Collective glioma networks infiltrating the brain thus depend on adherens junctions dynamics, the targeting of which may offer an unanticipated strategy to halt glioma progression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6952556PMC
http://dx.doi.org/10.1038/s41556-019-0443-xDOI Listing

Publication Analysis

Top Keywords

glioma cells
12
brain infiltration
8
glioma
8
infiltration glioma
8
glioma cell
8
brain
5
p120-catenin
5
p120-catenin-dependent collective
4
collective brain
4
networks
4

Similar Publications

Pediatric high-grade gliomas (pHGGs) are the most aggressive brain tumors in children, necessitating innovative therapies to improve outcomes. Unlike adult gliomas, recent research reveals that childhood gliomas have distinct biological features, requiring specific treatment strategies. Here, we focused on deciphering unique genetic dependencies specific to childhood gliomas.

View Article and Find Full Text PDF

NK cells are a type of antitumor immune cell with promising clinical application, following T cells. The activity of NK cells is primarily regulated by their surface receptors and immune microenvironment. In gliomas, the tumor microenvironment exerts a strong immunosuppressive effect, which significantly reduces the clinical efficacy of NK cell immunotherapy.

View Article and Find Full Text PDF

Bullatine A suppresses glioma cell growth by targeting SIRT6.

Heliyon

January 2025

Department of Cerebrovascular Disease, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, PR China.

Gliomas are the most common primary tumors of the nervous system, which is generally treated using adjuvant chemotherapy following surgical resection. However, patient survival time is still short, and there is currently no successful treatment for highly malignant gliomas. Bullatine A (BLA) is a diterpenoid alkaloid of the genus Aconitum which antirheumatic and anti-inflammatory pharmacological properties.

View Article and Find Full Text PDF

Bulk and single-cell transcriptome revealed the metabolic heterogeneity in human glioma.

Heliyon

January 2025

Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210029, China.

Background: Emerging perspectives on tumor metabolism reveal its heterogeneity, a characteristic yet to be fully explored in gliomas. To advance therapies targeting metabolic processes, it is crucial to uncover metabolic differences and identify distinct metabolic subtypes. Therefore, we aimed to develop a classification system for gliomas based on the enrichment levels of four key metabolic pathways: glutaminolysis, glycolysis, the pentose phosphate pathway, and fatty acid oxidation.

View Article and Find Full Text PDF

Background: Glioblastoma multiforme (GBM) is the most prevalent primary brain tumour, with an incidence of 2 per 100,000. The standard clinical treatments do not sufficiently target cell migration and invasion, leading to recurrence after surgical resection and resistance after chemotherapy and radiotherapy. Pre-clinical studies are being conducted to construct artificial substrates that can mimic the tumour microenvironment (TME) to prevent GBM cells from migrating along their primary route through blood vessels and white matter tracts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!