High rates of artemisinin-based combination therapy (ACT) failures in the treatment of malaria in Southeast Asia have led to triple-drug strategies to extend the useful life of ACTs. In this study, we determined whether methylene blue [MB; 3,7-bis(dimethylamino)phenothiazin-5-ium chloride hydrate] alters the pharmacokinetics of artesunate-amodiaquine (ASAQ) and enhances the antimalarial activity of ASAQ. In an open-label, randomized crossover design, a single oral dose of ASAQ (200 mg AS/540 mg AQ) alone or with MB (325 mg) was administered to 15 healthy Vietnamese volunteers. Serial blood samples were collected up to 28 days after dosing. Pharmacokinetic properties of the drugs were determined by noncompartmental analysis. After drug administration, plasma samples from seven participants were assessed for antimalarial activity against the artemisinin-sensitive MRA1239 and the artemisinin-resistant MRA1240 lines, MB significantly increased the mean area under the curve of the active metabolite of AS, dihydroartemisinin (1,246 ± 473 versus 917 ± 405 ng·h/ml, = 0.009) but did not alter the pharmacokinetics of AQ, AS, or desethylamodiaquine. Comparing the antimalarial activities of the plasma samples from the participants collected up to 48 h after ASAQ plus MB (ASAQ+MB) and ASAQ dosing against the MRA1239 and MRA1240 lines, MB significantly enhanced the blood schizontocidal activity of ASAQ by 2.0-fold and 1.9-fold, respectively. The ring-stage survival assay also confirmed that MB enhanced the antimalarial activity of ASAQ against MRA1240 by 2.9-fold to 3.8-fold, suggesting that the triple-drug combination has the potential to treat artemisinin-resistant malaria and for malaria elimination. (This study has been registered in the Australian New Zealand Clinical Trials Registry [https://anzctr.org.au/] under registration number ACTRN12612001298808.).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7038242 | PMC |
http://dx.doi.org/10.1128/AAC.01441-19 | DOI Listing |
Unlabelled: is a high-priority organism for the development of new antibacterial treatments. We found that the antimalarial medication mefloquine (MFQ) permeabilized the bacterial cell membrane of , decreased membrane fluidity, and caused physical injury to the membrane. MFQ also maintained activity across different pH conditions (PH range 5-8).
View Article and Find Full Text PDFMalar J
January 2025
PATH, 2201 Westlake Ave Ste 200, Seattle, WA, 98121, USA.
Background: The World Health Organization conditionally recommends reactive drug administration to reduce malaria transmission in settings approaching elimination. However, few studies have evaluated the impact of reactive focal drug administration (rFDA) in sub-Saharan Africa, and none have evaluated it under programmatic conditions. In 2016, Senegal's national malaria control programme introduced rFDA, the presumptive treatment of compound members of a person with confirmed malaria, and reactive mass focal drug administration (rMFDA), an expanded effort including neighbouring compounds during an outbreak, in 10 low transmission districts in the north of the country.
View Article and Find Full Text PDFMalar J
January 2025
Department of Parasitology-Mycology and Tropical Medicine, Université Des Sciences de La Santé de Libreville, BP 4009, Libreville, Gabon.
Background: The negative impact of COVID-19 pandemic on healthcare service utilization has been reported in several countries. In Gabon, data on the preparedness for future pandemic are lacking. The aim of the present study was to assess the trends of hospital attendance, malaria and self-medication prevalences as well as ITN use before and during Covid-19 first epidemic waves in a paediatric wards of a sentinel site for malaria surveillance, in Libreville, Gabon.
View Article and Find Full Text PDFEur J Pharmacol
January 2025
Department of Urology, Brown Cancer Center, 505 S Hancock Street, Louisville, KY, USA. Electronic address:
Manzamine A, a natural compound derived from various sponge genera, features a β-carboline structure and exhibits a range of biological activities, including anti-inflammatory and antimalarial effects. Its potential as an anticancer agent has been explored in several tumor models, both in vitro and in vivo, showing effects through mechanisms such as cytotoxicity, regulation of the cell cycle, inhibition of cell migration, epithelial-to-mesenchymal transition (EMT), autophagy, and apoptosis through multi-target interactions of E2F transcriptional factors, ribosomal S6 kinases, androgen receptor (AR), SIX1, GSK-3β, V-ATPase, and p53/p21/p27 cascades. This systematic review evaluates existing literature on the potential application of this marine alkaloid as a novel cancer therapy, highlighting its promising ability to inhibit cancer cell growth while causing minimal side effects.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea.
: , a bacterium residing in hair follicles, triggers acne by inducing monocyte-mediated inflammatory cytokine production. Gedunin, a limonoid derived from (commonly known as neem), is renowned for its antifungal, antimalarial, anticancer, anti-inflammatory, and neuroprotective effects. However, its role in mitigating -induced skin inflammation remains unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!