AI Article Synopsis

  • Recent advancements in high-throughput technologies have made RNA sequencing more cost-effective, enabling the study of circRNAs, which are crucial for gene expression regulation and may serve as disease biomarkers.
  • There are currently few integrated tools for analyzing circRNAs that meet computational reproducibility standards, prompting the development of Docker4Circ.
  • Docker4Circ simplifies circRNAs analysis through an R interface, encapsulated computational tasks in Docker images, a user-friendly Java GUI, and does not require advanced scripting skills, all while ensuring reproducibility in bioinformatics analyses.

Article Abstract

Recent improvements in cost-effectiveness of high-throughput technologies has allowed RNA sequencing of total transcriptomes suitable for evaluating the expression and regulation of circRNAs, a relatively novel class of transcript isoforms with suggested roles in transcriptional and post-transcriptional gene expression regulation, as well as their possible use as biomarkers, due to their deregulation in various human diseases. A limited number of integrated workflows exists for prediction, characterization, and differential expression analysis of circRNAs, none of them complying with computational reproducibility requirements. We developed Docker4Circ for the complete analysis of circRNAs from RNA-Seq data. Docker4Circ runs a comprehensive analysis of circRNAs in human and model organisms, including: circRNAs prediction; classification and annotation using six public databases; back-splice sequence reconstruction; internal alternative splicing of circularizing exons; alignment-free circRNAs quantification from RNA-Seq reads; and differential expression analysis. Docker4Circ makes circRNAs analysis easier and more accessible thanks to: (i) its R interface; (ii) encapsulation of computational tasks into docker images; (iii) user-friendly Java GUI Interface availability; and (iv) no need of advanced bash scripting skills for correct use. Furthermore, Docker4Circ ensures a reproducible analysis since all its tasks are embedded into a docker image following the guidelines provided by Reproducible Bioinformatics Project.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6982331PMC
http://dx.doi.org/10.3390/ijms21010293DOI Listing

Publication Analysis

Top Keywords

analysis circrnas
12
circrnas
8
circrnas rna-seq
8
rna-seq data
8
expression regulation
8
differential expression
8
expression analysis
8
analysis
6
docker4circ
5
docker4circ framework
4

Similar Publications

CircTEC Inhibits the Follicular Atresia in Buffalo () via Targeting miR-144-5p/FZD3 Signaling Axis.

Int J Mol Sci

December 2024

Guangxi Key Laboratory of Animal Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning 530004, China.

The specific expression profile and function of circular RNA (circRNA) in follicular atresia remain largely unknown. Here, the circRNA expression profiles of granulosa cells derived from healthy follicles (HFs) and antral follicles (AFs) in buffalo were analyzed by RNA-seq, and the mechanism of a differentially expressed circRNA (DEcircRNA) circTEC regulating the granulosa cell function that affects follicular atresia was further explored. RNA-seq results showed that a total of 112 DEcircRNAs were identified.

View Article and Find Full Text PDF

Identification and Analysis of Circular RNAs in Mammary Gland from Yaks Between Lactation and Dry Period.

Animals (Basel)

January 2025

Key Laboratory of Yak Breeding of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.

Lactation is a complex physiological process regulated by numerous genes and factors. Circular RNA (circRNA), a non-coding RNA, acts as a molecular sponge that sequesters microRNAs (miRNAs) to regulate target gene expression. Although circRNA has been linked to mammary gland lactation, its specific role in yaks remains underexplored.

View Article and Find Full Text PDF

The Response of the miRNA Profiles of the Thyroid Gland to the Artificial Photoperiod in Ovariectomized and Estradiol-Treated Ewes.

Animals (Basel)

December 2024

State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.

The photoperiod has been considered to be a key environmental factor in sheep reproduction, and some studies have shown that the thyroid gland plays an important role in mammalian reproduction, but the molecular mechanism is still unclear. In this study, we used the artificial-light-controlled, ovariectomized, and estradiol-treated model (OVX + E2 model); healthy and consistent 2-3-year-old Sunite multiparous ewes were collected; and thyroids were collected for testing, combined with RNA-seq technology and bioinformatics analysis, to analyze the effects of different photoperiods (long photoperiod treatment for 42 days, LP42; short photoperiod treatment for 42 days, SP42; SP42 transferred to LP42, SPLP42) on the variations in the miRNA profiles of the thyroid gland. A total of 105 miRNAs were differentially expressed in the thyroid gland, most of which were new miRNAs.

View Article and Find Full Text PDF

Aim: Breast cancer (BC) is the most frequently diagnosed malignancy worldwide, necessitating continued research into its molecular mechanisms. Circular RNAs (circRNAs) are increasingly recognized for their role in various cancers, including BC. This study explores the role of circRNA kinesin family member 4A (circKIF4A) in BC progression and its underlying molecular mechanisms.

View Article and Find Full Text PDF

Nile blue has been widely used in histological staining, fluorescence labeling, and DNA probing, with its intercalation behavior into the DNA helix being well documented. Here, we present a comprehensive investigation to address a current knowledge gap regarding the binding properties of Nile blue to two types of double-stranded RNA (dsRNA): poly(A·U) and poly(I·C), using various biophysical techniques. Absorption and fluorescence spectroscopic studies suggest a significant binding interaction between Nile blue and the two designated dsRNAs, specifically indicating an intercalation binding mode with poly(A·U) and demonstrating a noticeably higher binding affinity compared to poly(I·C).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!