In vitro cancer drug testing carries a low predictive value. We developed the human leiomyoma-derived matrix "Myogel" to better mimic the human tumor microenvironment (TME). We hypothesized that Myogel could provide an appropriate microenvironment for cancer cells, thereby allowing more in vivo-relevant drug testing. We screened 19 anticancer compounds, targeting the epidermal growth factor receptor (EGFR), MEK, and PI3K/mTOR on 12 head and neck squamous cell carcinoma (HNSCC) cell lines cultured on plastic, mouse sarcoma-derived Matrigel (MSDM), and Myogel. We applied a high-throughput drug screening assay under five different culturing conditions: cells in two-dimensional (2D) plastic wells and on top or embedded in Matrigel or Myogel. We then compared the efficacy of the anticancer compounds to the response rates of 19 HNSCC monotherapy clinical trials. Cancer cells on top of Myogel responded less to EGFR and MEK inhibitors compared to cells cultured on plastic or Matrigel. However, we found a similar response to the PI3K/mTOR inhibitors under all culturing conditions. Cells grown on Myogel more closely resembled the response rates reported in EGFR-inhibitor monotherapy clinical trials. Our findings suggest that a human tumor matrix improves the predictability of in vitro anticancer drug testing compared to current 2D and MSDM methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7017272PMC
http://dx.doi.org/10.3390/cancers12010092DOI Listing

Publication Analysis

Top Keywords

drug testing
16
matrix improves
8
improves predictability
8
head neck
8
cancer drug
8
human tumor
8
cancer cells
8
anticancer compounds
8
egfr mek
8
cultured plastic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!