A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Evaluation of Delamination in Concrete by IE Testing Using Multi-Channel Elastic Wave Data. | LitMetric

Evaluation of Delamination in Concrete by IE Testing Using Multi-Channel Elastic Wave Data.

Sensors (Basel)

Department of Architectural Engineering, Dong-A University, 37 Nakdong-Daero 550 Beon-gil Saha-gu, Busan 69315, Korea.

Published: December 2019

The main objectives of this study are to develop a non-destructive test method for evaluating delamination defects in concrete by the Impact-echo test using multi-channel elastic wave data and to verify the validity of the proposed method by experimental studies in the laboratory. First, prototype equipment using an eight-channel linear sensor array was developed to perform elastic wave measurements on the surface of the concrete. In this study, three concrete slab specimens (1500 mm (width) by 1500 mm (length) by 300 mm (thickness)), with simulated delamination defects of various lateral dimensions and depth, were designed and constructed in the laboratory. Multi-channel elastic wave signals measured on the three concrete specimens were converted to the frequency-phase velocity image by using the phase-shift method. A data processing method was proposed to extract the dominant propagating waves and non-propagating waves from the dispersion images. The dominant wave modes were used to evaluate delamination defects in concrete. It was demonstrated that the surface wave velocity values were useful for characterizing the shallow delamination defects in concrete. In addition, the peak frequency of non-propagating wave modes extracted from the dispersion images gives information on the lateral dimensions and depths of the delamination defects. This study also discussed the feasibility of combined use of the results from propagating and non-propagating wave modes to better understand the information on delamination defects in concrete. As will be discussed, the multi-channel elastic wave measurements enable more accurate, consistent, and rapid measurements and data processing for evaluation of delamination defects in concrete than the single-channel sensing method.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6983097PMC
http://dx.doi.org/10.3390/s20010201DOI Listing

Publication Analysis

Top Keywords

delamination defects
28
elastic wave
20
defects concrete
20
multi-channel elastic
16
wave modes
12
concrete
9
wave
9
evaluation delamination
8
wave data
8
wave measurements
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!