Testing and screening of plant-derived molecules on normal human cells in vitro is a widely used approach for discovering their eventual health beneficial effects for human ageing and longevity. As little is known about age-associated differential effects of such molecules, here we report that young (<25% replicative lifespan completed) and near-senescent (>90% replicative lifespan completed) human skin fibroblasts exposed for 1-15 days to a wide range of concentrations (0.1-100 μM) of the three selected phytochemicals, namely α-boswellic acid acetate (ABC), praeruptorin-A (PTA), and salvianolic acid-B (SAB) had age-related differential effects. The parameters studied were the metabolic activity (MTT assay), cellular morphological phenotype, one-step growth characteristics, expression of genes involved in the cell cycle regulation and cytokine network genes, protein levels of p53, cytosolic superoxide dismutase (SOD1) and microtubule-associated protein 1A/1B-light chain 3 (LC3), and the extent of protein carbonylation and protein aggregation as a sign of oxidative stress. All three compounds showed biphasic hormetic dose response by stimulating cell growth, survival and metabolic activity at low doses (up to 1 μM), while showing inhibitory effects at high doses (>10 μM). Furthermore, the response of early passage young cells was different from that of the late passage near-senescent cells, especially with respect to the expression of cell cycle-related and inflammation-related genes. Such studies have importance with respect to the use of low doses of such molecules as health-promoting and/or ageing-interventions through the phenomenon of hormesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6982785PMC
http://dx.doi.org/10.3390/molecules25010141DOI Listing

Publication Analysis

Top Keywords

differential effects
12
plant-derived molecules
8
α-boswellic acid
8
acid acetate
8
salvianolic acid-b
8
age-related differential
8
metabolic activity
8
low doses
8
effects
5
molecules α-boswellic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!