Wireless sensor networks (WSNs) and the Internet of Things (IoT) have been widely used in industrial, construction, and other fields. In recent years, demands for pedestrian localization have been increasing rapidly. In most cases, these applications work in harsh indoor environments, which have posed many challenges in achieving high-precision localization. Ultra-wide band (UWB)-based localization systems and pedestrian dead reckoning (PDR) algorithms are popular. However, both have their own advantages and disadvantages, and both exhibit a poor performance in harsh environments. UWB-based localization algorithms can be seriously interfered by non-line-of-sight (NLoS) propagation, and PDR algorithms display a cumulative error. For ensuring the accuracy of indoor localization in harsh environments, a hybrid localization approach is proposed in this paper. Firstly, UWB signals cannot penetrate obstacles in most cases, and traditional algorithms for improving the accuracy by NLoS identification and mitigation cannot work in this situation. Therefore, in this study, we focus on integrating a PDR and UWB-based localization algorithm according to the UWB communication status. Secondly, we propose an adaptive PDR algorithm. UWB technology can provide high-precision location results in line-of-sight (LoS) propagation. Based on these, we can train the parameters of the PDR algorithm for every pedestrian, to improve the accuracy. Finally, we implement this hybrid localization approach in a hardware platform and experiment with it in an environment similar to industry or construction. The experimental results show a better accuracy than traditional UWB and PDR approaches in harsh environments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6982697 | PMC |
http://dx.doi.org/10.3390/s20010193 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!