Integrating embedded resources and network analysis to understand food-energy-water nexus in the US.

Sci Total Environ

Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, United States of America; Rock Ethics Institute, The Pennsylvania State University, University Park, PA, United States of America. Electronic address:

Published: March 2020

AI Article Synopsis

  • * The study innovatively separates corn into food and energy resources, uses updated water consumption values for energy, and analyzes network properties of trade flows to further the FEW nexus literature.
  • * Findings reveal that incorporating corn transfers into the analysis leads to an 11% decrease in the virtual water footprint of the cereal grain network, and that the food trade network is denser and more connected than the energy trade network, highlighting significant differences in water footprint transfers between water-scarce and

Article Abstract

To find a sustainable way of supplying food, energy, and water (FEW) while simultaneously protecting the ecosystem services, it is imperative to build greater understanding on interconnections, feedback, and dependencies in FEW systems. The FEW nexus has developed as a field of study to provide frameworks for such pursuits. Building upon previous work in this paper, we analyze FEW resources through the development of a virtual water trade network using the US network of food and energy flows and their associated virtual water contents. Our main objective is to provide a quantitative estimation of the virtual water embodied in the internal US food and energy transfers and analyze the associated interdependencies of these connections. Three methodological advancements demonstrate the novelty of this work. First, unlike existing FEW virtual water modeling studies, our work separates corn into both food and energy resources accounting for the significant use of corn for ethanol in the United States. Second, we apply recently published water consumption values for energy commodities confirming the variation between previous water footprint studies and these more accurate accounting procedures. Third, we examine network properties of the trade flows furthering FEW nexus literature and showcasing avenues for future research. Our results indicate that accounting for the transfer of corn from the food commodity network to the energy commodity network leads to a virtual water footprint decline of 11% for the cereal grain virtual water network. Additionally, the food trade network shows highly dense and connected properties compared to the energy trade network. Finally, our results indicate that transfers of water footprints between water scarce and water abundant states differ substantially between food and energy virtual water networks. A quantifiable understanding of the water footprint network embodied in the food and energy trade can help in developing policies for promoting conservation and efficiency in the context of the FEW nexus.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2019.136153DOI Listing

Publication Analysis

Top Keywords

virtual water
28
food energy
24
water
14
trade network
12
water footprint
12
network
10
energy
9
food
8
corn food
8
commodity network
8

Similar Publications

Impacts of planting structure adjustment on water saving in the Shiyang River Basin of Arid Region.

Sci Rep

December 2024

College of Geography and Environment Science, Northwest Normal University, 967 Anning East Road, Lanzhou, 730070, Gansu, China.

Planting structure adjustment (PSA) affects agricultural water saving, and is an essential part of water-saving agricultural construction. This study introduced virtual water theory and innovatively constructed a model to assess the water-saving effects of PSA in Shiyang River Basin over the past 38 years, explore the relationship between planting structure and water saving, and clarify the most water-saving planting structure. The results showed that the sown area of economic crops consistently increased as food crop areas decreased in the four counties (districts) from 1980 to 2017.

View Article and Find Full Text PDF

Balancing the Functionality and Biocompatibility of Materials with a Deep-Learning-Based Inverse Design Framework.

Environ Health (Wash)

December 2024

Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.

The rational design of molecules with the desired functionality presents a significant challenge in chemistry. Moreover, it is worth noting that making chemicals safe and sustainable is crucial to bringing them to the market. To address this, we propose a novel deep learning framework developed explicitly for inverse design of molecules with both functionality and biocompatibility.

View Article and Find Full Text PDF

Enteroviruses (EV) are a highly diverse group of viruses multiplying primarily in the gastrointestinal tract and/or the upper respiratory tract, initially distributed in two separate genera: Enterovirus and Rhinovirus, respectively. According to the similarities in genome organization and particle structure, rhinovirus species were later reclassified as also belonging to genus Enterovirus. Human EV infections are usually asymptomatic or causing mild clinical manifestations.

View Article and Find Full Text PDF

Introduction: Dryopteris ramosa is a high-altitude plant of moist and shady habitat. Its aerial parts are edible and orally administered as an antibiotic and effective aphrodisiac. They are also used as pesticides, astringents, and febrifuges.

View Article and Find Full Text PDF

The EFSA Panel on Food Contact Materials assessed the safety of 2,2'-oxydiethylamine, which is intended to be used at up to 14% w/w as a monomer along with adipic acid and caprolactam to make polyamide thin films intended for single use, in contact with all types of food under all conditions of time and temperature. Specific migration of 2,2'-oxydiethylamine was tested from a polyamide film in water and was below the limit of quantification (LOQ) of 0.015 mg/kg.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!