Natural microorganisms involved in solid-state fermentation (SSF) of Pu-erh tea have a significant impact on its chemical components. Aspergillus sydowii is a fungus with a high caffeine-degrading capacity. In this work, A. sydowii was inoculated into sun-dried green tea leaves for SSF. Metabolomic analysis was carried out by using UPLC-QTOF-MS method, and caffeine and related demethylated products were determined by HPLC. The results showed that A. sydowii had a significant (P < 0.05) impact on amino acids, carbohydrates, flavonoids, and caffeine metabolism. Moreover, A. sydowii could promote the production of ketoprofen, baclofen, and tolbutamide. Along with caffeine degradation, theophylline, 3-methylxanthine, 1,7-dimethylxanthine, 1-methylxanthine, and 7-methylxanthine were increased significantly (P < 0.05) during inoculated fermentation, which showed that demethylation was the main pathway of caffeine degradation in A. sydowii secondary metabolism. The absolute quantification analysis showed that caffeine could be demethylated and converted to theophylline and 3-methylxanthine. Particularly, about 93.24% of degraded caffeine was converted to theophylline, 27.92 mg/g of theophylline was produced after fermentation. PRACTICAL APPLICATION: Aspergillus sydowii could cause caffeine degradation in Pu-erh tea solid-state fermentation and produce theophylline through the demethylation route. Using a starter strain to ferment tea leaves offers a more controllable, reproducible, and highly productive alternative for the biosynthesis of theophylline.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1750-3841.15015DOI Listing

Publication Analysis

Top Keywords

metabolomic analysis
8
aspergillus sydowii
8
lc-ms/ms-based metabolomic
4
analysis caffeine-degrading
4
caffeine-degrading fungus
4
fungus aspergillus
4
sydowii
4
sydowii tea
4
tea fermentation
4
fermentation natural
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!