Reinforcing Supramolecular Bonding with Magnetic Dipole Interactions to Assemble Dynamic Nanoparticle Superlattices.

J Am Chem Soc

Department of Materials Science and Engineering , Massachusetts Institute of Technology, 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States.

Published: January 2020

Assembling superparamagnetic particles into ordered lattices is an attractive means of generating new magnetically responsive materials, and is commonly achieved by tailoring interparticle interactions as a function of the ligand coating. However, the inherent linkage between the collective magnetic behavior of particle arrays and the assembly processes used to generate them complicates efforts to understand and control material synthesis. Here, we use a synergistic combination of a chemical force (hydrogen bonding) and magnetic dipole coupling to assemble polymer-brush coated superparamagnetic iron oxide nanoparticles, where the relative strengths of these interactions can be tuned to reinforce one another and stabilize the resulting superlattice phases. We find that we can precisely control both the dipole-dipole coupling between nanoparticles and the strength of the ligand-ligand interactions by modifying the interparticle spacing through changes to the polymer spacer between the hydrogen bonding groups and the nanoparticles' surface. This results in modulation of the materials' blocking temperature, as well as the stabilization of a unique superlattice phase that only exists when magnetic coupling between particles is present. Using magnetic interactions to affect nanoparticle assembly in conjunction with ligand-mediated interparticle interactions expands the potential for synthesizing predictable and controllable nanoparticle-based magnetic composites.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.9b11476DOI Listing

Publication Analysis

Top Keywords

bonding magnetic
8
magnetic dipole
8
interparticle interactions
8
hydrogen bonding
8
magnetic
6
interactions
6
reinforcing supramolecular
4
supramolecular bonding
4
dipole interactions
4
interactions assemble
4

Similar Publications

Miniaturized inertial sensor based on high-resolution dual atom interferometry.

Rev Sci Instrum

January 2025

State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China.

Atom interferometry shows high sensitivity for inertial measurements in the laboratory, but it faces difficulties in field applications because of a trade-off between sensitivity and size. Therefore, there is an urgent need to develop a small sensor with high resolution for measuring acceleration and rotation in inertial navigation applications. Presented here is a miniaturized inertial sensor capable of measuring acceleration and rotation simultaneously based on high-resolution dual atom interferometers.

View Article and Find Full Text PDF

We describe a workshop that prompts chemistry students in the final 2 years of secondary school to apply their understanding of modern analytical chemistry techniques to a 'real world' example. The scenario used is that of a forensic science laboratory that has been asked to determine the structure of an illicit compound, Revisomed (methamphetamine) being sold as a revision aid, and seized by police. Over the course of an hour, the students use a combination of infrared (IR) spectroscopy, liquid chromatography (LC), high-resolution mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy data to determine the structure of Revisomed from first principles.

View Article and Find Full Text PDF

Trace contaminants are toxic and their widespread presence in the environment potentially threatens human health. The levels of these pollutants are often difficult to determine directly using instruments owing to the complexities of environment matrices. Hence, pretreatment steps, such as sample purification and concentration, are key along with various processes that enhance the accuracy and sensitivity of the detection method.

View Article and Find Full Text PDF

Two-dimensional inverse double sandwich CoB: strain-induced non-magnetic to ferromagnetic transition.

Phys Chem Chem Phys

January 2025

Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

A full-scale structural search was performed using density functional theory calculations and a universal structural prediction evolutionary algorithm. This produced a lowest energy two-dimensional (2D) CoB structure. The CoB-1 global minimum structure has unusual inverse double sandwich features.

View Article and Find Full Text PDF

Chemical shift encoding based double bonds quantification in triglycerides using deep image prior.

Quant Imaging Med Surg

January 2025

Department of Imaging and Interventional Radiology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.

Fatty acid can potentially serve as biomarker for evaluating metabolic disorder and inflammation condition, and quantifying the double bonds is the key for revealing fatty acid information. This study presents an assessment of a deep learning approach utilizing deep image prior (DIP) for the quantification of double bonds and methylene-interrupted double bonds of triglyceride derived from chemical-shift encoded multi-echo gradient echo images, all achieved without the necessity for network training. The methodology implemented a cost function grounded in signal constraints to continually refine the neural network's parameters on a single slice of images through iterative processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!