Metal nanoparticles (NPs) have been deemed an imperative sector of nanomaterial for triggering the Schottky-junction-driven electron flow in photoredox catalysis, but they suffer from sluggish charge-transfer kinetics, rendering efficient charge flow difficult. Here, we report the construction of unidirectional charge-transfer channel in a metal/semiconductor heterostructure via a ligand-triggered self-assembly method, by which hierarchically branched ligands (DMAP)-capped Pd NPs were controllably attached on the WO nanorods (NRs) scaffold, resulting in the well-defined Pd@DMAP/WO NRs heterostructures. The pinpointed deposition of Pd@DMAP on the WO NRs endows the Pd@DMAP/WO NRs heterostructure with conspicuously improved photoactivities for organic pollutant mineralization, as well as the capacities for photocatalytic selective oxidation of aromatic alcohols to aldehydes and photoreduction of chromium ions under the irradiation of simulated sunlight and visible light, far surpassing the applicability of blank WO NRs. This is due to the imperative contribution of Pd@DMAP as efficient electron reservoir in accelerating the unidirectional flow of electrons from Pd@DMAP to WO NRs, overcoming the confinement of spatially hierarchically branched ligand and interface configuration. Moreover, interfacial charge transport efficiency is finely tuned by the interface configuration engineering. The active species in the multifarious photoreactions were unveiled, and a linker-triggered photoredox catalysis mechanism was put forward. It is hoped that our current work would afford new strategies for strategically constructing metal/semiconductor heterostructures for versatile photocatalytic applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.9b03073 | DOI Listing |
Molecules
January 2025
Aix Marseille Univ, CNRS, ICR, 13013 Marseille, France.
In this study we report on the efficiency of a furane-indole-chromenone-based organic derivative () as a photocatalyst in the α-arylation of enol acetate upon LED irradiation at 405 nm, and as a photoinitiator/photocatalyst in the free radical polymerization of an acrylate group in the presence of -(4--butylphenyl)iodonium hexafluorophosphate (Iod) as an additive, or in the presence of both Iod and ethyl-4-(dimethyl amino) benzoate (EDB) under LED irradiation at 365 nm. The photochemical properties of this new light-sensitive compound are described, and the wide redox window (3.27 eV) and the high excited-state potentials / (+2.
View Article and Find Full Text PDFJ Med Chem
January 2025
College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
The hypoxic environment of solid tumors significantly diminishes the therapeutic efficacy of oxygen-dependent photodynamic therapy. Developing efficient photosensitizers that operate photoredox catalysis presents a promising strategy to overcome this challenge. Herein, we report the rational design of two rhenium(I) tricarbonyl complexes ( and ) with electron donor-acceptor-donor configuration.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Department of Chemistry, Indian Institute of Technology Ropar (IIT Ropar), Rupnagar, Punjab-140 001, India.
Low-energy photoredox catalysis has gained significant attention in developing organic transformations due to its ability to achieve high penetration depth and minimum health risks. Herein, we disclose a red-light ( = 640 nm)-mediated C-3 formylation of indoles utilizing a helical carbenium ion as a photocatalyst and 2,2-dimethoxy-,-dimethylethanamine as a formylating source. These protocols exhibit a broad substrate scope under mild conditions with efficient scalability for the synthesis of C-3 formylated indoles.
View Article and Find Full Text PDFOrg Lett
January 2025
School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram 695551, Kerala, India.
Herein, aromaticity-driven thio(seleno)ester group transfer from novel 1,4-dihydropyridine thio(seleno)esters to alkene feedstocks is disclosed by merging palladium and photoredox catalysis. In this process, photoactivation of dihydropyridine thio(seleno)esters is integrated with regioselective hydrometalation of alkenes, avoiding photoinduced Pd-C bond homolysis of organopalladium intermediates. Additionally, a regioselective hydroselenocarbonylation of an alkene is accomplished for the first time using a bench-stable selenoester reagent.
View Article and Find Full Text PDFACS Catal
January 2025
Fakultät für Chemie und Pharmazie, Universität Regensburg, Regensburg 93040, Germany.
Transition metal catalysis is crucial for the synthesis of complex molecules, with ligands and bases playing a pivotal role in optimizing cross-coupling reactions. Despite advancements in ligand design and base selection, achieving effective synergy between these components remains challenging. We present here a general approach to nickel-catalyzed photoredox reactions employing -butylamine as a cost-effective bifunctional additive, acting as the base and ligand.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!