AI Article Synopsis

  • There's a growing demand for better methods to analyze how cancer cells react to treatments.
  • Researchers have developed a label-free, real-time technique using a single cell gated transistor (SCGT) to monitor individual HeLa cells during therapy, focusing on cell death responses.
  • The SCGT measures changes in cell morphology and ion concentrations as cells undergo apoptosis, effectively replacing traditional patch clamping methods for analyzing single-cell activity.

Article Abstract

There is an ever-growing need for more advanced methods to study the response of cancer cells to new therapies. To determine cancer cells' response from a cell-mortality perspective to various cancer therapies, we report a label-free and real time method to monitor the in situ response of individual HeLa cells using a single cell gated transistor (SCGT). As a cell undergoes apoptotic cell death, it experiences changes in morphology and ion concentrations. This change is well in line with the threshold voltage of the SCGT, which has been verified by correlating the data with the cell morphologies by scanning electron microscopy and the ion-concentration analysis by inductively-coupled plasma mass spectrometry (ICPMS). This SCGT could replace patch clamps to study single cell activity via direct measurement in real time. Importantly, this SCGT can be used to study the electrical response of a single cell to stimuli that leaves the membrane intact.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.9b03136DOI Listing

Publication Analysis

Top Keywords

single cell
16
real time
8
cell
7
gating single
4
cell label-free
4
label-free real-time
4
real-time measurement
4
measurement method
4
method cellular
4
cellular progression
4

Similar Publications

Exploring the interplay between enhancer-promoter interactions and transcription.

Curr Opin Genet Dev

January 2025

Department of Biochemistry and Molecular Biophysics, Program for Mathematical Genomics, Columbia University Irving Medical Center, New York, NY 10032, USA. Electronic address:

Enhancers in metazoan genomes are known to activate their target genes across both short and long genomic distances. Recent advances in chromosome conformation capture assays and single-cell imaging have shed light on the underlying chromatin contacts and dynamics. Yet the relationship between 3D physical enhancer-promoter (E-P) interactions and transcriptional activation remains unresolved.

View Article and Find Full Text PDF

Although chromatin remodelers are among the most important risk genes associated with neurodevelopmental disorders (NDDs), the roles of these complexes during brain development are in many cases unclear. Here, we focused on the recently discovered ChAHP chromatin remodeling complex. The zinc finger and homeodomain transcription factor ADNP is a core subunit of this complex, and de novo mutations lead to intellectual disability and autism spectrum disorder.

View Article and Find Full Text PDF

Tubulin detyrosination shapes cytoskeletal architecture and virulence.

Proc Natl Acad Sci U S A

January 2025

Maladies infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, University of Montpellier, CNRS, Institut de Recherche pour le Développement, Montpellier 34095, France.

Tubulin detyrosination has been implicated in various human disorders and is important for regulating microtubule dynamics. While in most organisms this modification is restricted to α-tubulin, in trypanosomatid parasites, it occurs on both α- and β-tubulin. Here, we show that in , a single vasohibin (LmVASH) enzyme is responsible for differential kinetics of α- and β-tubulin detyrosination.

View Article and Find Full Text PDF

Full Quantum Dynamics Study for H Atom Scattering from Graphen.

J Phys Chem A

January 2025

Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay UMR 8214, 91405 Orsay, France.

This study deals with the understanding of hydrogen atom scattering from graphene, a process critical for exploring C-H bond formation and energy transfer during atom surface collision. In our previous work [Shi, L.; 2023, 159, 194102], starting from a cell with 24 carbon atoms treated periodically, we have achieved quantum dynamics (QD) simulations with a reduced-dimensional model (15D) and a simulation in full dimensionality (75D).

View Article and Find Full Text PDF

Background: During orthotopic liver transplantation, allograft reperfusion is a dynamic point in the operation and often requires vasoactive medications and blood transfusions. Normothermic machine perfusion (NMP) of liver allografts has emerged to increase the number of transplantable organs and may have utility during donation after circulatory death (DCD) liver transplantation in reducing transfusion burden and vasoactive medication requirements.

Methods: This is a single-center retrospective study involving 226 DCD liver transplant recipients who received an allograft transported with NMP (DCD-NMP group) or with static cold storage (DCD-SCS group).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!