The most pressing barrier for the development of advanced electronics based on two-dimensional (2D) layered semiconductors stems from the lack of site-selective synthesis of complementary n- and p-channels with low contact resistance. Here, we report an in-plane epitaxial route for the growth of interlaced 2D semiconductor monolayers using chemical vapor deposition with a gas-confined scheme, in which patterned graphene (Gr) serves as a guiding template for site-selective growth of Gr-WS-Gr and Gr-WSe-Gr heterostructures. The Gr/2D semiconductor interface exhibits a transparent contact with a nearly ideal pinning factor of 0.95 for the n-channel WS and 0.92 for the p-channel WSe. The effective depinning of the Fermi level gives an ultralow contact resistance of 0.75 and 1.20 kΩ·μm for WS and WSe, respectively. Integrated logic circuits including inverter, NAND gate, static random access memory, and five-stage ring oscillator are constructed using the complementary Gr-WS-Gr-WSe-Gr heterojunctions as a fundamental building block, featuring the prominent performance metrics of high operation frequency (>0.2 GHz), low-power consumption, large noise margins, and high operational stability. The technology presented here provides a speculative look at the electronic circuitry built on atomic-scale semiconductors in the near future.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.9b08288DOI Listing

Publication Analysis

Top Keywords

contact resistance
8
graphene-transition metal
4
metal dichalcogenide
4
dichalcogenide heterojunctions
4
heterojunctions scalable
4
scalable low-power
4
low-power complementary
4
complementary integrated
4
integrated circuits
4
circuits pressing
4

Similar Publications

Objective: Patients with drug-resistant epilepsy (DRE) are often referred for phase II evaluation with stereo-electroencephalography (SEEG) to identify a seizure onset zone for guiding definitive treatment. For patients without a focal seizure onset zone, neuromodulation targeting the thalamic nuclei-specifically the centromedian nucleus, anterior nucleus of the thalamus, and pulvinar nucleus-may be considered. Currently, thalamic nuclei selection is based mainly on the location of seizure onset, without a detailed evaluation of their network involvement.

View Article and Find Full Text PDF

Repellency and toxicity of long-lasting insecticide-treated bed nets (LLINs) to bed bugs.

PLoS One

January 2025

Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, United States of America.

Vector control is essential for eliminating malaria, a vector-borne parasitic disease responsible for over half a million deaths annually. Success of vector control programs hinges on community acceptance of products like long-lasting insecticide-treated nets (LLINs). Communities in malaria-endemic regions often link LLIN efficacy to their ability to control indoor pests such as bed bugs (Cimex lectularius L.

View Article and Find Full Text PDF

Mapping the Topological Proximity-Induced Gap in Multiterminal Josephson Junctions.

Phys Rev Lett

December 2024

Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA.

Multiterminal Josephson junctions (MTJJs), devices in which a normal metal is in contact with three or more superconducting leads, have been proposed as artificial analogs of topological crystals. The topological nature of MTJJs manifests as a modulation of the quasiparticle density of states (DOS) in the normal metal that may be probed by tunneling measurements. We show that one can reveal this modulation by measuring the resistance of diffusive MTJJs with normal contacts, which shows rich structure as a function of the phase differences {ϕ_{i}}.

View Article and Find Full Text PDF

Capsular Polysaccharide Restrains Type VI Secretion in .

Elife

January 2025

Laboratory of Molecular Microbiology, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland.

The type VI secretion system (T6SS) is a sophisticated, contact-dependent nanomachine involved in interbacterial competition. To function effectively, the T6SS must penetrate the membranes of both attacker and target bacteria. Structures associated with the cell envelope, like polysaccharides chains, can therefore introduce spatial separation and steric hindrance, potentially affecting the efficacy of the T6SS.

View Article and Find Full Text PDF

Background: TB is a leading infectious disease globally, with war and displacement significantly increasing its burden. In Ethiopia, ongoing conflict and displacement have worsened health conditions, yet data on TB prevalence and resistance remain scarce. This study aimed to determine the prevalence of TB, rifampicin-resistant TB (RR-TB), and associated factors among presumptive TB patients in hospitals during the ongoing crisis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!