We investigated the value of reactive stroma as a predictor for trastuzumab resistance in patients with early HER2-positive breast cancer receiving adjuvant therapy. The pathological reactive stroma and the mRNA gene signatures that reflect reactive stroma in 209 HER2-positive breast cancer samples from the FinHer adjuvant trial were evaluated. Levels of stromal gene signatures were determined as a continuous parameter, and pathological reactive stromal findings were defined as stromal predominant breast cancer (SPBC; ≥50% stromal) and correlated with distant disease-free survival. Gene signatures associated with reactive stroma in HER2-positive early breast cancer (N = 209) were significantly associated with trastuzumab resistance in estrogen receptor (ER)-negative tumors (hazard ratio [HR] = 1.27 p interaction = 0.014 [DCN], HR = 1.58, p interaction = 0.027 [PLAU], HR = 1.71, p interaction = 0.019 [HER2STROMA, novel HER2 stromal signature]), but not in ER-positive tumors (HR = 0.73 p interaction = 0.47 [DCN], HR = 0.71, p interaction = 0.73 [PLAU], HR = 0.84; p interaction = 0.36 [HER2STROMA]). Pathological evaluation of HER2-positive/ER-negative tumors suggested an association between SPBC and trastuzumab resistance. Reactive stroma did not correlate with tumor-infiltrating lymphocytes (TILs), and the expected benefit from trastuzumab in patients with high levels of TILs was pronounced only in tumors with low stromal reactivity (SPBC <50%). In conclusion, reactive stroma in HER2-positive/ER-negative early breast cancer tumors may predict resistance to adjuvant trastuzumab therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ijc.32859DOI Listing

Publication Analysis

Top Keywords

reactive stroma
24
breast cancer
20
trastuzumab resistance
16
gene signatures
12
her2-positive early
8
early breast
8
her2-positive breast
8
pathological reactive
8
reactive
7
stromal
6

Similar Publications

Purpose: Sulfur mustard gas (SM) exposure to eyes causes multiple corneal injuries including stromal cell loss in vivo. However, mechanisms mediating stromal cell loss/death remains elusive. This study sought to test the novel hypothesis that SM-induced toxicity to human corneal stromal fibroblasts involves ferroptosis mechanism via p38 MAPK signaling.

View Article and Find Full Text PDF

While the C-X-C motif chemokine ligand 5 (CXCL5) is recognized as an inflammatory mediator and a potent attractant for immune cells, its functions within the human prostate remain unclear. This study explored the expression, functions, and regulatory mechanisms of CXCL5 in prostate stroma and cancer cells. CXCL5 secreted from prostate cancer cells enhanced neutrophil migration.

View Article and Find Full Text PDF

αFAP-specific nanobodies mediate a highly precise retargeting of modified AAV2 capsids thereby enabling specific transduction of tumor tissues.

Mol Ther Methods Clin Dev

December 2024

AAV Gene Therapy Research Group, Research Beyond Borders (RBB), Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riß, Germany.

Due to the refractiveness of tumor tissues to adeno-associated virus (AAV) transduction, AAV vectors are poorly explored for cancer therapy delivery. Here, we aimed to engineer AAVs to target tumors by enabling the specific engagement of fibroblast activation protein (FAP). FAP is a cell surface receptor distinctly upregulated in the reactive tumor stroma, but rarely expressed in healthy tissues.

View Article and Find Full Text PDF

Corneal cross-linking.

Prog Retin Eye Res

January 2025

ELZA Institute, Webereistrasse 2, CH-8953, Dietikon, Switzerland; Laboratory for Ocular Cell Biology, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland; Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1206, Geneva, Switzerland. Electronic address:

First introduced over 20 years ago as a treatment for progressive keratoconus, the original "Dresden" corneal cross-linking (CXL) protocol involved riboflavin saturation of the stroma, followed by 30 min of 3 mW/cm-intensity ultraviolet-A (UV-A) irradiation. This procedure generates reactive oxygen species (ROS) that cross-link stromal molecules, thereby stiffening the cornea and counteracting the ectasia-induced weakening. Due to their large size, riboflavin molecules cannot readily pass through the corneal epithelial cell tight junctions; thus, epithelial debridement was performed.

View Article and Find Full Text PDF

3D printing of stiff, tough, and ROS-scavenging nanocomposite hydrogel scaffold for in situ corneal repair.

Acta Biomater

December 2024

State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao 266071, China; Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan 250021, China. Electronic address:

Despite significant advancements in hydrogels in recent years, their application in corneal repair remains limited by several challenges, including unfitted curvatures, inferior mechanical properties, and insufficient reactive oxygen species (ROS)-scavenging activities. To address these issues, this study introduces a 3D-printed corneal scaffold with nanocomposite hydrogel consisting of gelatin methacrylate (GelMA), poly (ethylene glycol) diacrylate (PEGDA), Laponite, and dopamine. GelMA and PEGDA act as matrix materials with photo-crosslinking abilities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!