The roles of m6A RNA modifiers in human cancer.

J Chin Med Assoc

Department of Public Health, and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.

Published: March 2020

Like DNA and proteins, RNA is subject to numerous (over 160) covalent modifications which play critical roles to regulate RNA metabolism. Among these modifications, N-methyladenosine (mA) is the most prevalent RNA methylation on mRNA which occurs on around 25% of transcripts. The recent studies demonstrated that mA participates in many aspects of RNA processing, including splicing, nuclear exporting, translation, stabilization, etc. Therefore, it revealed a new layer of regulatory mechanism for gene expression and has been termed "RNA Epigenetics" or "Epitranscriptomics". RNA mA is regulated and exerts its functions by three groups of "mA RNA modifiers" including mA methyltransferases (writers), mA demethylases (erasers), and mA binding proteins (readers). In this review, we would summarize and discuss the current understandings of the roles of the conventional mA RNA modifiers in human cancers.

Download full-text PDF

Source
http://dx.doi.org/10.1097/JCMA.0000000000000251DOI Listing

Publication Analysis

Top Keywords

rna
8
rna modifiers
8
modifiers human
8
roles m6a
4
m6a rna
4
human cancer
4
cancer dna
4
dna proteins
4
proteins rna
4
rna subject
4

Similar Publications

Pulmonary arterial hypertension (PAH) is a syndrome characterized by increased pulmonary vascular resistance and elevated pulmonary artery pressure, ultimately leading to right heart failure and even death. Increasing evidence implicates the fat mass and obesity-associated protein (FTO) in various metabolic and inflammatory pathways; however, its role in pulmonary endothelial function and PAH remains largely unexplored. In this study, we examined the effects of endothelial cell-specific FTO knockout on PAH development.

View Article and Find Full Text PDF

Aggressiveness and phylogenetic relationship of associated with crown and root rot in pyrethrum plants.

Plant Dis

January 2025

The University of Melbourne, Faculty of Science, School of Agriculture, Food and Ecosystem Sciences, Parkville, Victoria, Australia;

In Australia, pyrethrum (Tanacetum cinerariifolium) cultivation provides a significant portion of the global supply of natural insecticidal pyrethrins. However, crown and root rots, along with stunted plant growth and plant loss during winter, are significant issues affecting certain sites. Several isolates of the Fusarium oxysporum species complex (FOSC) have been identified as causal agents of crown and root rot in pyrethrum, highlighting these as key pathogens contributing to this decline.

View Article and Find Full Text PDF

Delayed fracture healing (DFH), a common complication of post-fracture surgery, exhibits an incompletely understood pathogenesis. The present study endeavors to investigate the roles and underlying mechanisms of miR-656-3p and Bone Morphogenetic Protein-2 (BMP-2) in DFH. It was recruited 94 patients with normal fracture healing (NFH) and 88 patients with DFH of the femoral neck.

View Article and Find Full Text PDF

Advances in RNA editing in hematopoiesis and associated malignancies.

Blood

January 2025

State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College; Center for Stem Cell Medicine,, Tianjin, China.

Adenosine-to-inosine (A-to-I) RNA editing is a prevalent RNA modification essential for cell survival. The process is catalyzed by the Adenosine Deaminase Acting on RNA (ADAR) enzyme family that converts adenosines in double-stranded RNAs (dsRNAs) into inosines, which are read as guanosines during translation. Deep sequencing has helped to reveal that A-to-I editing occurs across various types of RNAs to affect their functions.

View Article and Find Full Text PDF

T-cell prolymphocytic leukemia (T-PLL) is an aggressive lymphoid malignancy with limited treatment options. To discover new treatment targets for T-PLL, we performed high-throughput drug sensitivity screening on 30 primary patient samples ex-vivo. After screening over 2'800 unique compounds, we found T-PLL to be more resistant to most drug classes, including chemotherapeutics, compared to other blood cancers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!