pH-dependent RNA isolation from cells encapsulated in chitosan-based biomaterials.

Int J Biol Macromol

Integrated Bioscience Program, the University of Akron, Akron, OH, USA; Department of Chemical, Biomolecular, and Corrosion Engineering, the University of Akron, Akron, OH, USA. Electronic address:

Published: March 2020

Chitosan has emerged as a useful biomaterial employed in tissue engineering and drug delivery applications due to its tunable and interesting properties. However, chitosan is protonated at biological pH and thus carries positive charges, which renders chitosan incompatible with conventional methods of RNA extraction. RNA extraction is an important step in investigating cell responses and behavior through studying their gene expression transcriptional profiles. While some researchers have tried different techniques to improve the yield and purity of RNA extracted from cells encapsulated in chitosan-based biomaterials, no single study has investigated the effects of manipulating pH of the homogenate during RNA extraction on the yield and quality of total RNA. This study confirms the release and binding of RNA from chitosan to be pH dependent while analyzing the impact of pH changes during the tissue disruption and homogenization step of extraction on the resulting yield and quality of isolated RNA. This concept was applied to three commonly used methods of RNA extraction, using adult neural stem/progenitor cells (aNSPCs) encapsulated within methacrylamide chitosan (MAC) as a model chitosan-based bioscaffold. High pH conditions resulted in high yields with good quality using both TRIzol and CTAB. pH of the homogenate did not affect RNeasy spin columns, which worked best in neutral conditions with good quality, however, the overall yield was low. Results in total show that pH affected RNA interaction with a chitosan-based bioscaffold, and thus altered the concentration, purity, and integrity of isolated RNA, dependent on the method used.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7029618PMC
http://dx.doi.org/10.1016/j.ijbiomac.2019.12.263DOI Listing

Publication Analysis

Top Keywords

rna extraction
16
rna
10
cells encapsulated
8
encapsulated chitosan-based
8
chitosan-based biomaterials
8
methods rna
8
extraction yield
8
yield quality
8
total rna
8
isolated rna
8

Similar Publications

Irritable bowel syndrome (IBS) is a multifactorial condition with heterogeneous pathophysiology, including intestinal permeability alterations. The aim of the present study was to assess the ability of a probiotic blend (PB) consisting of two strains (CECT7484 and CECT7485) and one strain of (CECT7483) to recover the permeability increase induced by mediators from IBS mucosal biopsies and to highlight the underlying molecular mechanisms. Twenty-one IBS patients diagnosed according to ROME IV criteria (11 IBS-D and 10 IBS-M) and 7 healthy controls were enrolled.

View Article and Find Full Text PDF

The respiratory tract is colonized with low-density microbial communities, which have been shown to impact human respiratory health through microbiota-host interactions. However, a lack of fast and cost-effective nucleic acid extraction method for low-microbial biomass samples hinders investigation of respiratory microbiota. Here, we performed a pilot study to assess the suitability of the NAxtra nucleic acid extraction protocol for profiling bacterial microbiota in respiratory samples.

View Article and Find Full Text PDF

Recent advances in single-cell RNA-Sequencing (scRNA-Seq) technologies have revolutionized our ability to gather molecular insights into different phenotypes at the level of individual cells. The analysis of the resulting data poses significant challenges, and proper statistical methods are required to analyze and extract information from scRNA-Seq datasets. Sample classification based on gene expression data has proven effective and valuable for precision medicine applications.

View Article and Find Full Text PDF

Objectives: The ability to differentiate epileptic- and non-epileptic events is challenging due to a lack of reliable molecular seizure biomarker that provide a retrospective diagnosis. Here, we use next generation sequencing methods on whole blood samples to identify changes in RNA expression following seizures.

Methods: Blood samples were obtained from 32 patients undergoing video electroencephalogram (vEEG) monitoring.

View Article and Find Full Text PDF

Thalassemia is a hematological disorder caused by mutations in the hemoglobin gene, often necessitating regular blood transfusions. These frequent transfusions exert continuous pressure on patients' immune systems. Despite extensive research on the hematological aspects of thalassemia, few studies have explored the immune status of these patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!