LPA-mediated signaling induced by endothelial cells and anticancer drug regulates cellular functions of osteosarcoma cells.

Exp Cell Res

Division of Molecular Oncology, Department of Life Science, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka, 577-8502, Japan. Electronic address:

Published: March 2020

Lysophosphatidic acid (LPA) signaling via LPA receptors (LPA to LPA) regulates a variety of malignant properties of cancer cells. It is known that endothelial cells promote tumor progression and chemoresistance. The present study aimed to investigate the roles of LPA in cellular functions modulated by endothelial cells and anticancer drug in osteosarcoma cells. Human osteosarcoma MG-63 cells were maintained in endothelial F2 cell supernatants. After culturing for 3 months, MG63-F2 cells were established. LPAR5 expression level in MG63-F2 cells was significantly elevated, compared with MG-63 cells. The cell motile activity of MG63-F2 cells was markedly higher than that of MG-63 cells. To validate the effects of LPA on cell motile activity, LPA knockdown cells were generated from MG-63 cells. The cell motile activity of MG-63 cells was inhibited by LPA knockdown. The cell survival to cisplatin (CDDP) was reduced in MG-63 cells treated with LPA. In the presence of LPA, the cell survival rate was significantly lower in MG63-F2 cells than MG-63 cells, correlating with LPAR5 expression. LPA knockdown cells indicated the high cell survival rate to CDDP. Moreover, LPAR5 expression level was increased in the long-term CDDP treated MG63-C cells. The cell survival to CDDP of MG63-C cells was enhanced by LPA knockdown. These results suggest that cellular functions are regulated through LPA-mediatd signaling induced by endothelial cells and CDDP in MG-63 cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yexcr.2020.111813DOI Listing

Publication Analysis

Top Keywords

endothelial cells
16
mg63-f2 cells
16
lpa knockdown
16
cell survival
16
cells
15
cellular functions
12
lpa
12
lpar5 expression
12
cell motile
12
motile activity
12

Similar Publications

Tissue nanotransfection-based endothelial PLCγ2-targeted epigenetic gene editing in vivo rescues perfusion and diabetic ischemic wound healing.

Mol Ther

January 2025

Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, United States; Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, United States. Electronic address:

Diabetic wounds are complicated by underlying peripheral vasculopathy. Reliance on vascular endothelial growth factor (VEGF) therapy to improve perfusion makes logical sense, yet clinical study outcomes on rescuing diabetic wound vascularization have yielded disappointing results. Our previous work has identified that low endothelial phospholipase Cγ2 (PLCγ2) expression hinders the therapeutic effect of VEGF on the diabetic ischemic limb.

View Article and Find Full Text PDF

Neovascular age-related macular degeneration and diabetic macular edema are leading causes of vision-loss evoked by retinal neovascularization and vascular leakage. The glycoprotein microfibrillar-associated protein 4 (MFAP4) is an integrin αβ ligand present in the extracellular matrix. Single-cell transcriptomics reveal MFAP4 expression in cell-types in close proximity to vascular endothelial cells including choroidal vascular mural cells and retinal astrocytes and Müller cells.

View Article and Find Full Text PDF

A Comprehensive Atlas of AAV Tropism in the Mouse.

Mol Ther

January 2025

Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA. Electronic address:

Gene therapy with Adeno-Associated Virus (AAV) vectors requires knowledge of their tropism within the body. Here we analyze the tropism of ten naturally occurring AAV serotypes (AAV3B, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAVrh8, AAVrh10 and AAVrh74) following systemic delivery into male and female mice. A transgene expressing ZsGreen and Cre recombinase was used to identify transduction in a cell-dependent manner based on fluorescence.

View Article and Find Full Text PDF

The aberrant vascular response associated with tendon injury results in circulating immune cell infiltration and a chronic inflammatory feedback loop leading to poor healing outcomes. Studying this dysregulated tendon repair response in human pathophysiology has been historically challenging due to the reliance on animal models. To address this, our group developed the human tendon-on-a-chip (hToC) to model cellular interactions in the injured tendon microenvironment; however, this model lacked the key element of physiological flow in the vascular compartment.

View Article and Find Full Text PDF

Background: Cardiovascular risk factors (CRFs) like hypertension, high cholesterol, and diabetes mellitus are increasingly linked to cognitive decline and dementia, especially in cerebral small vessel disease (cSVD). White matter hyperintensities (WMH) are closely associated with cognitive impairment, but the mechanisms behind their development remain unclear. Blood-brain barrier (BBB) dysfunction may be a key factor, particularly in cSVD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!