Malignant pleural mesothelioma (MPM) is a rare and aggressive tumor arising in the mesothelium that covers the lungs, the heart, and the thoracic cavity. MPM development is mainly associated with asbestos. Treatments provide only modest survival since the median survival average is 9-18 months from the time of diagnosis. Therefore, more effective treatments must be identified. Most data describing new therapeutic targets were obtained from in vitro experiments and need to be validated in reliable in vivo preclinical models. This article describes one such reliable MPM orthotopic model obtained after injection of a human MPM cell line H2052/484 into the pleural cavity of immunodeficient athymic mice. Transplantation in the orthotopic site allows studying the progression of tumor in the natural in vivo environment. Positron emission tomography/computed tomography (PET/CT) molecular imaging using the clinical [F]-2-fluoro-2-deoxy-D-glucose ([F]FDG) radiotracer is the diagnosis method of choice for examining patients with MPM. Accordingly, [F]FDG-PET/CT was used to longitudinally monitor the disease progression of the H2052/484 orthotopic model. This technique has a high 3R potential (Reduce the number of animals, Refine to lessen pain and discomfort, and Replace animal experimentation with alternatives) since the tumor development can be monitored non-invasively and the number of animals required could be significantly reduced. This model displays a high development rate, a rapid tumor growth, is cost-efficient and allows for rapid clinical translation. By using this orthotopic xenograft MPM model, researchers can assess biological responses of a reliable MPM model following therapeutic interventions.

Download full-text PDF

Source
http://dx.doi.org/10.3791/60272DOI Listing

Publication Analysis

Top Keywords

orthotopic model
12
pleural mesothelioma
8
athymic mice
8
reliable mpm
8
number animals
8
mpm model
8
mpm
7
model
6
orthotopic
5
implantation monitoring
4

Similar Publications

Vitamin K-dependent gamma-carboxyglutamic acid protein 1 promotes pancreatic ductal adenocarcinoma progression through stabilizing oncoprotein KRAS and tyrosine kinase receptor EGFR.

Clin Transl Med

January 2025

State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China.

Background: Vitamin K-dependent γ-glutamic acid carboxylation (Gla) proteins are calcium-binding and membrane-associated, participating in coagulation, bone turnover, and cancer biology. The molecular function of transmembrane proline-rich Gla proteins (PRRGs) remains unexplored.

Methods: Analysis of pancreatic ductal adenocarcinoma (PDAC) datasets, including transcription profiles, clinical data, and tissue microarrays, was conducted to evaluate PRRG1 expression and its clinical relevance.

View Article and Find Full Text PDF

Aptamer-modified melittin micelles efficiently inhibit osteosarcoma deterioration by inducing immunogenic cell death.

Colloids Surf B Biointerfaces

January 2025

State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, China; Key Laboratory of Biomedical Engineering of Hainan Province, One Health Institute, Hainan University. Electronic address:

Osteosarcoma (OS) is the most common primary bone malignancy characterized by deposition of an immature osteoid matrix. OS treatment has proven challenging because of the high risk of metastatic progression and recurrence after chemotherapy. Melittin (MLT) is recognized as a potential antitumor candidate to overcome chemotherapy resistance and provoke superior immunostimulatory effects.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is characterized by a dense extracellular matrix (ECM) exhibiting high stiffness and fast stress relaxation. In this work, gelatin-based viscoelastic hydrogels were developed to mimic the compositions, stiffness, and fast stress relaxation of PDAC tissues. The hydrogels were cross-linked by gelatin-norbornene-boronic acid (GelNB-BA), thiolated macromers, and a 1,2-diol-containing linear synthetic polymer PHD.

View Article and Find Full Text PDF

Next-Generation Photosensitizers: Cyanine-Carborane Salts for Superior Photodynamic Therapy of Metastatic Cancer.

Angew Chem Int Ed Engl

January 2025

Michigan State University, Biochemistry and Molecular Biology, Biochemistry Building, 603 Wilson Rd, Lunt Lab, 48824, 48824, East Lansing, UNITED STATES OF AMERICA.

Photodynamic therapy (PDT) has emerged as a promising targeted treatment for cancer. However, current PDT is limited by low tissue penetration, insufficient phototoxicity (toxicity with light irradiation), and undesirable cytotoxicity (toxicity without light irradiation). Here, we report the discovery of cyanine-carborane salts as potent photosensitizers (PSs) that harness the near-infrared (NIR) absorbing [cyanine+] with the inertness of [carborane-].

View Article and Find Full Text PDF

In triple-negative breast cancer (TNBC), pro-tumoral macrophages promote metastasis and suppress the immune response. To target these cells, a previously identified CD206 (mannose receptor)-binding peptide, mUNO was engineered to enhance its affinity and proteolytic stability. The new rationally designed peptide, MACTIDE, includes a trypsin inhibitor loop, from the Sunflower Trypsin Inhibitor-I.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!