P2-type Fe- and Mn-based layered sodium transition metal oxides are promising positive electrode materials for sodium batteries due to their high energy density and low costs of the constituting transition metals. However, poor structural reversibility and fast capacity decay have prevented their breakthrough so far. Herein, the real-time dynamic phase transitions and capacity fading mechanism of the P2 NaFeMnO positive electrode are revealed by operando X-ray diffraction, operando/ex situ X-ray absorption spectroscopy, neutron powder diffraction, and neutron pair distribution functions. Upon the desodiation process, a layered OP4 phase with long-range order is found as an intermediate state. With further deep desodiation, the formation of a Na-depleted ramsdellite phase with a short coherent length of 30 Å is observed for the first time. However, the transition from OP4 to ramsdellite is considered to be irreversible due to the breakdown of the layered structural characteristics, resulting in poor cycling performance in a variety of Fe-based layered sodium transition metal oxides. This work suggests that stabilizing the crystal structure by substitution or chemical modification can be a favorable strategy to avoid the degradation of positive electrodes and thus to improve the cycling performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.9b18109 | DOI Listing |
Epilepsia
January 2025
Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.
Objective: Somatic variants causing epilepsy are challenging to detect, as they are only present in a subset of brain cells (e.g., mosaic), resulting in low variant allele frequencies.
View Article and Find Full Text PDFEur Arch Otorhinolaryngol
January 2025
Department of Otolaryngology, China-Japan Friendship Hospital, Beijing, China.
Objectives: This study examined the relationships between electrophysiological measures of the electrically evoked auditory brainstem response (EABR) with speech perception measured in quiet after cochlear implantation (CI) to identify the ability of EABR to predict postoperative CI outcomes.
Methods: Thirty-four patients with congenital prelingual hearing loss, implanted with the same manufacturer's CI, were recruited. In each participant, the EABR was evoked at apical, middle, and basal electrode locations.
Alzheimers Dement
December 2024
University of California, Los Angeles, CA, USA.
Background: Dementia exhibits abnormal network activity, including altered gamma frequency (30-100 Hz) in Alzheimer's disease (AD). A non-pharmacological, non-invasive approach to AD treatment involves stimulating sensory inputs using gamma band, with 40 Hz as the most effective in eliciting a robust EEG response. Light and sound stimulation at 40 Hz reduces AD pathology in mouse models and improves cognition in humans with AD.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
MJHS Institute for Innovation in Palliative Care, New York, NY, USA.
Background: Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulation method. Short-term tDCS protocols have shown positive effects on cognitive outcomes in Alzheimer's Disease (AD) populations. Less is known about the long-term benefits of tDCS on cognition in AD.
View Article and Find Full Text PDFBackground: Cochlear implantation is an effective method of auditory rehabilitation. Nevertheless, the results show individual variations depending on several factors.
Aim: To evaluate cochlear implantation results based on the APCEI profile (Acceptance, Perception, Comprehension, Oral Expression and Intelligibility) and audiometric results.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!