We have extensively studied the laser-induced Fano scattering, electron-phonon coupling, bond length and phonon lifetime of the α-Fe2O3 nanostructure prepared through a simple co-precipitation method. A noticeable red shift and asymmetry have been observed in the phonon modes of the prepared α-Fe2O3 nanostructure. The traditional assessment of asymmetric broadening and a red shift in the Raman spectra of a nanomaterial was due to the quantum confinement effect. In the present investigation, the red shift and the asymmetry in the phonon modes of the α-Fe2O3 nanostructure have been studied on the basis of the heating effect and Fano interference between the discrete phonon and the laser-induced electron plasma in the nanomaterial. The observed asymmetrical factors of the A1g(1) and Eg(4) phonon modes were positive and negative respectively and are seen to be decreasing with the laser power. The laser-induced surface temperature of the material has been studied using the Stokes/anti-Stokes method. The bond lengths of the Fe-O molecules present in the α-Fe2O3 nanomaterial increased and the calculated Fröhlich interactions decreased with the laser energy.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9cp04959bDOI Listing

Publication Analysis

Top Keywords

α-fe2o3 nanostructure
12
red shift
12
phonon modes
12
fano scattering
8
scattering electron-phonon
8
electron-phonon coupling
8
coupling bond
8
bond length
8
length phonon
8
phonon lifetime
8

Similar Publications

A High-Efficiency Electrochemical Biosensor for the Detection of Mucosal-Associated Invariant T Cells.

Anal Chem

December 2024

Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China.

Mucosal-associated invariant T (MAIT) cells exhibit significant potential in the assessment of tumor development and immunotherapy. However, there is currently no convenient and efficient method to analyze the quantitative changes of MAIT cells during cancer development and treatment, which has not been extensively studied. Here, we report an electrochemical biosensor designed to efficiently monitor MAIT cells in peripheral blood by simultaneously recognizing Vα7.

View Article and Find Full Text PDF

Carbon-based light addressable potential aptasensor based on the synergy of C-MXene@rGO and OPD@NGQDs for low-density lipoprotein detection.

Mikrochim Acta

December 2024

School of Life and Environmental Sciences, School of Intellectual Property, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People's Republic of China.

A novel carbon-based light-addressable potentiometric aptasensor (C-LAPS) was constructed for detection low-density lipoprotein (LDL) in serum. Carboxylated TiC MXene @reduced graphene oxide (C-MXene@rGO) was used as interface and o-phenylenediamine functionalized nitrogen-doped graphene quantum dots (OPD@NGQDs) as the photoelectric conversion element. The photosensitive layers composed of OPD@NGQDs/C-MXene@rGO exhibit superior photoelectric conversion efficiency and excellent biocompatibility, which contribute to an improved response signal.

View Article and Find Full Text PDF

A novel copper and iron doped containing chitosan and heparin sodium carbon dots (CS-Cu,Fe/HS) nanozyme was formulated through a single-step microwave digestion method. CS-Cu,Fe/HS exhibits excellent peroxidase (POD)-like activity and positive charge characteristics, and it can oxidize the negatively charged 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) in the presence of HO to produce a green compound (ox-ABTS). Furthermore, CS-Cu,Fe/HS enhances electron transfer and provides additional active sites through the valence state transformations of Fe/Fe and Cu/Cu.

View Article and Find Full Text PDF

Effects of Au Addition on the Performance of Thermal Electronic Noses Based on Porous CuO-SnO Nanospheres.

Nanomaterials (Basel)

December 2024

Graduate School of Integrated Science and Technology, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.

The electronic nose is an increasingly useful tool in many fields and applications. Our thermal electronic nose approach, based on nanostructured metal oxide chemiresistors in a thermal gradient, has the advantage of being tiny and therefore integrable in portable and wearable devices. Obviously, a wise choice of the nanomaterial is crucial for the device's performance and should therefore be carefully considered.

View Article and Find Full Text PDF

In this study, we investigate the electrodeposition of various metals on silicon. Mn, Co, Ni, Ru, Pd, Rh, and Pt were identified as promising candidates for controlled electrodeposition onto silicon. Electrochemical evaluations employing cyclic voltammetry, Scanning Electron Microscopy (SEM) associated with energy-dispersive X-Ray Spectroscopy (SEM-EDS), and X-Ray Photoelectron Spectroscopy (XPS) techniques confirmed the deposition of Pd, Rh, and Pt as nanoparticles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!