Hemocompatibility of Super-Repellent surfaces: Current and Future.

Mater Horiz

Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA.

Published: October 2019

Virtually all blood-contacting medical implants and devices initiate immunological events in the form of thrombosis and inflammation. Typically, patients receiving such implants are also given large doses of anticoagulants, which pose a high risk and a high cost to the patient. Thus, the design and development of surfaces with improved hemocompatibility and reduced dependence on anticoagulation treatments is paramount for the success of blood-contacting medical implants and devices. In the past decade, the hemocompatibility of super-repellent surfaces (i.e., surfaces that are extremely repellent to liquids) has been extensively investigated because such surfaces greatly reduce the blood-material contact area, which in turn reduces the area available for protein adsorption and blood cell or platelet adhesion, thereby offering the potential for improved hemocompatibility. In this review, we critically examine the progress made in characterizing the hemocompatibility of super-repellent surfaces, identify the unresolved challenges and highlight the opportunities for future research on developing medical implants and devices with super-repellent surfaces.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6941870PMC
http://dx.doi.org/10.1039/C9MH00051HDOI Listing

Publication Analysis

Top Keywords

super-repellent surfaces
16
hemocompatibility super-repellent
12
medical implants
12
implants devices
12
blood-contacting medical
8
improved hemocompatibility
8
surfaces
7
hemocompatibility
5
surfaces current
4
current future
4

Similar Publications

Article Synopsis
  • - Biofluid-contacting devices often experience biofouling, leading to issues like thrombus formation and bacterial biofilm buildup, which negatively affect device performance and health safety.
  • - Traditional antifouling solutions like hydrophilic polymers and heparin coatings are usually unstable, while lubricant-infused surfaces (LIS) offer better long-term effectiveness but are complicated to produce and limited in application.
  • - This study presents a new approach for creating flexible lubricant-infused poly(vinyl alcohol) (PVA) membranes that exhibit excellent antifouling properties and improved mechanical flexibility, potentially enhancing the performance of medical devices and implants by reducing blood clots and bacterial adhesion.
View Article and Find Full Text PDF

Ultrafast bounce of particle-laden droplets.

Nat Commun

November 2024

Department of Mechanical Engineering, City University of Hong Kong, 999077, Hong Kong, China.

The rebound of liquid droplets on solid surfaces exhibits behavior reminiscent of elastic spheres, albeit with distinct contact dynamics. While the rapid detachment of droplets from surfaces holds significant relevance for various applications, previous endeavors relying on engineered surfaces can only reduce the contact time to several milliseconds, primarily due to capillary effects dominating droplet bounce. Here, we present ultrafast rebound by designing heterogeneous core-shell droplets encapsulating a particle (DEP), which achieves an unprecedentedly short contact time of 0.

View Article and Find Full Text PDF

Material surfaces maintaining a liquid super-repellent is crucial in fields such as anti-fouling, drag reduction, and heat transfer. Superhydrophobic surfaces provide an effective approach but suffer from phase change-induced wetting transitions, hindering their practical applications. In this work, Biphilic armored superhydrophobic surfaces (BASS) are designed by integrating hydrophilic interconnected surface frames with superhydrophobic nanostructures.

View Article and Find Full Text PDF

Solutions of macromolecules can undergo liquid-liquid phase separation to form droplets with ultralow surface tension. Droplets with such low surface tension wet and spread over common surfaces such as test tubes and microscope slides, complicating experiments. The development of a universal super-repellent surface for macromolecular droplets has remained elusive because their ultralow surface tension requires low surface energies.

View Article and Find Full Text PDF

Droplet rebound is ubiquitous on super-repellent surfaces. Conversion between kinetic and surface energies suggests that rebound suppression is unachievable due to negligible energy dissipation. Here, we present an effective approach to suppressing rebounds by incorporating bubbles into droplets, even in super-repellent states.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!