Chemical investigation of the aerial parts of Andrographis paniculata resulted in isolation of nine compounds, including a new ent-labdane diterpenoid, andrographic acid methyl ester (1), a new chalcone glucoside, pashanone glucoside (5), and seven known metabolites, andrograpanin (2), andrographolide (3), andropanolide (4), andrographidine A (6), andrographidine F (7), 6-epi-8-O-acetyl-harpagide (8), and curvifloruside F (9). Their chemical structures were elucidated based on comprehensive analyses of the spectroscopic data, including NMR and MS. Among the isolated compounds, andropanolide exerted cytotoxicity toward LNCaP, HepG2, KB, MCF7, and SK-Mel2 carcinoma cells, with IC values ranging from 31.8 to 45.9 µM. In addition, andropanolide significantly inhibited the overproduction of nitric oxide (NO) in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages, with an IC value of 13.4 µM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1248/cpb.c19-00662 | DOI Listing |
Eur J Pharmacol
January 2025
Department of Physiology, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea. Electronic address:
Andrographis paniculata (AGPA) is known for its wide-ranging biological activities, including antiviral, antipyretic, and anticancer properties. However, its effects on muscle atrophy have not been well understood. This study investigates the impact of andrographolide (AD) and dehydroandrographolide succinate (DAS), key components of AGPA, on skeletal muscle atrophy using in vitro and in vivo models.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy.
In this manuscript, the effects of two extracts from were tested: (a) an extract titrated to 49.7% of andrographolide and obtained from leaves of the plant: (b) the pure andrographolide titrated to 99%. The extracts were dissolved in 1-butanol and tested on tumor lines (MCF7 and SH-SY5Y) and the non-tumor line (Huvec) to understand the effects on cell proliferation.
View Article and Find Full Text PDFPharm Biol
December 2025
Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok, Thailand.
Aim: Insufficient quality control and limited dissolution of extract capsules restricts their bioavailability and hinder the clinical use for treating mild coronavirus disease 2019 (COVID-19) patients.
Objective: This study aims to investigate pharmacokinetics and safety of high-dosage ethanolic extract (equivalent to 180 or 360 mg/day of andrographolide), relevant dosages used for mild COVID-19 treatment.
Methods: An open-label, single-dose, and repeated-dose conducted in healthy volunteers.
Cell Biochem Biophys
December 2024
Department of Biotechnology, Prathyusha Engineering College, Tiruvallur, Chennai, 602025, Tamilnadu, India.
The present study introduces a minimalistic and cost-effective approach to synthesising Gold nanoparticles (AuNPs) using aqueous leaf extracts of Andrographis paniculata. In this synthesis, bioactive metabolites in the leaf extract act as reducing agents, converting Au³⁺ ions to metallic Au⁰, while proteins in the extract form a stabilising layer around the nanoparticles to prevent agglomeration and maintain particle size stability. The synthesised AuNPs were systematically characterised using a range of analytical techniques.
View Article and Find Full Text PDFJ Biomol Struct Dyn
December 2024
Department of Science and Technology, Virology and Vaccine Research Program, Industrial Technology Development Institute, Taguig City, Philippines.
The Nipah virus (NiV), a highly pathogenic zoonotic virus of the family, poses significant threats with its alarming mortality rates and pandemic potential. Despite historical cases, effective therapeutics remain elusive, prompting urgent exploration of potential antivirals. In this study, a structure-based virtual screening approach was employed to evaluate 690 metabolites sourced from ten medicinal plants () for their antiviral activity against Nipah virus proteins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!