Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Voltage-gated sodium (NaV) channels, encoded by the gene para, play a critical role in the rapid processing and propagation of visual information related to collision avoidance behaviors. We investigated their localization by immunostaining the optic lobes and central brain of the grasshopper Schistocerca americana and the vinegar fly Drosophila melanogaster with an antibody that recognizes the channel peptide domain responsible for fast inactivation gating. NaV channels were detected at high density at all stages of development. In the optic lobe, they revealed stereotypically repeating fascicles consistent with the regular structure of the eye. In the central brain, major axonal tracts were strongly labeled, particularly in the grasshopper olfactory system. We used the NaV channel sequence of Drosophila to identify an ortholog in the transcriptome of Schistocerca. The grasshopper, vinegar fly, and human NaV channels exhibit a high degree of conservation at gating and ion selectivity domains. Comparison with three species evolutionarily close to Schistocerca identified splice variants of Para and their relation to those of Drosophila. The anatomical distribution of NaV channels molecularly analogous to those of humans in grasshoppers and vinegar flies provides a substrate for rapid signal propagation and visual processing in the context of visually-guided collision avoidance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7073303 | PMC |
http://dx.doi.org/10.1007/s00359-019-01396-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!