Central nervous system (CNS) diseases are emerging as a major issue in an aging society. Although extensive research has focused on the development of CNS drugs, the limited transport of therapeutic agents across the blood-brain barrier (BBB) remains a major challenge. Conventional two-dimensional culture dishes do not recapitulate in vivo physiology and real-time observations of molecular transport are not possible in animal models. Recent advances in engineering techniques have enabled the generation of more physiologically relevant in vitro BBB models, and their applications have expanded from fundamental biological research to practical applications in the pharmaceutical industry. In this article, we provide an overview of recent advances in the development of in vitro BBB models, with a particular focus on the recapitulation of BBB function. The development of biomimetic BBB models is postulated to revolutionize not only fundamental biological studies but also drug screening.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2019.119732 | DOI Listing |
Magn Reson Med
January 2025
School of Medicine and Health, Institute for Diagnostic and Interventional Neuroradiology, Technical University of Munich, Munich, Germany.
Purpose: In brain tumors, disruption of the blood-brain barrier (BBB) indicates malignancy. Clinical assessment is qualitative; quantitative evaluation is feasible using the K leakage parameter from dynamic susceptibility contrast MRI. However, contrast agent-based techniques are limited in patients with renal dysfunction and insensitive to subtle impairments.
View Article and Find Full Text PDFBiomedicine (Taipei)
December 2024
School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan.
Introduction: Our previous research demonstrated that a large language model (LLM) based on the transformer architecture, specifically the MegaMolBART encoder with an XGBoost classifier, effectively predicts the blood-brain barrier (BBB) permeability of compounds. However, the permeability coefficients of compounds that can traverse this barrier remain unclear. Additionally, the absorption, distribution, metabolism, and excretion (ADME) characteristics of substances obtained from the Natural Product Research Laboratory (NPRL) at China Medical University Hospital (CMUH) have not yet been determined.
View Article and Find Full Text PDFChin J Integr Med
January 2025
Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.
Objective: To explore the neuroprotective effects of Xuefu Zhuyu Decoction (XFZYD) based on in vivo and metabolomics experiments.
Methods: Traumatic brain injury (TBI) was induced via a controlled cortical impact (CCI) method. Thirty rats were randomly divided into 3 groups (10 for each): sham, CCI and XFZYD groups (9 g/kg).
J Pharmacokinet Pharmacodyn
January 2025
Division of Systems Pharmacology and Pharmacy, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands.
P-glycoprotein (P-gp) is a key efflux transporter and may be involved in drug-drug interactions (DDIs) at the blood-brain barrier (BBB), which could lead to changes in central nervous system (CNS) drug exposure. Morphine is a P-gp substrate and therefore a potential victim drug for P-gp mediated DDIs. It is however unclear if P-gp inhibitors can induce clinically relevant changes in morphine CNS exposure.
View Article and Find Full Text PDFSAR QSAR Environ Res
December 2024
School of Computing and Data Sciences, FLAME University, Pune, India.
This study illustrates the use of chemical fingerprints with machine learning for blood-brain barrier (BBB) permeability prediction. Employing the Blood Brain Barrier Database (B3DB) dataset for BBB permeability prediction, we extracted nine different fingerprints. Support Vector Machine (SVM) and Extreme Gradient Boosting (XGBoost) algorithms were used to develop models for permeability prediction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!