A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Carbohydrate coated fluorescent mesoporous silica particles for bacterial imaging. | LitMetric

Carbohydrate coated fluorescent mesoporous silica particles for bacterial imaging.

Colloids Surf B Biointerfaces

Chemistry and Physics, College of Science, Health, Engineering and Education, Murdoch University, WA 6150, Australia. Electronic address:

Published: April 2020

This work investigated the synthesis of carbohydrate functionalized methylene blue doped amine grafted mesoporous silica nanoparticles (MB AMSN) and their application in bioimaging. A single-pot synthesis methodology was developed via a modified co-condensation sol-gel technique for simultaneous incorporation of the dye molecule in the nanoparticles, with amine grafting for subsequent functionalization. The obtained nanoparticles (∼ 450 nm) are mesoporous and have a high surface area (538 m/g), pore-volume (0.3 cm/g), showed excellent UV-vis absorbance, and dye encapsulation efficiency (> 75 %). These fluorescent nanoparticles were further functionalized with carbohydrate molecules before application as contrast agents in bacterial cells. In the present study, gram-positive (E. coli) and gram-negative (B. subtilis) bacteria were used as model organisms. Confocal laser microscopy results showed that the nanoparticles are highly fluorescent, and SEM of glucose conjugated MB doped nanoparticles indicated close interaction with E. coli with no toxicity observed towards either bacterial cells. The results demonstrate that by suitable surface functionalization, the methylene blue doped silica nanoparticles can be used as bioimaging agents.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2019.110751DOI Listing

Publication Analysis

Top Keywords

mesoporous silica
8
methylene blue
8
blue doped
8
silica nanoparticles
8
bacterial cells
8
nanoparticles
7
carbohydrate coated
4
coated fluorescent
4
fluorescent mesoporous
4
silica particles
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!