ELM embedded discriminative dictionary learning for image classification.

Neural Netw

School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore. Electronic address:

Published: March 2020

Dictionary learning is a widely adopted approach for image classification. Existing methods focus either on finding a dictionary that produces discriminative sparse representation, or on enforcing priors that best describe the dataset distribution. In many cases, the dataset size is often small with large intra-class variability and nondiscriminative feature space. In this work we propose a simple and effective framework called ELM-DDL to address these issues. Specifically, we represent input features with Extreme Learning Machine (ELM) with orthogonal output projection, which enables diverse representation on nonlinear hidden space and task specific feature learning on output space. The embeddings are further regularized via a maximum margin criterion (MMC) to maximize the inter-class variance and minimize intra-class variance. For dictionary learning, we design a novel weighted class specific ℓ norm to regularize the sparse coding vectors, which promotes uniformity of the sparse patterns of samples belonging to the same class and suppresses support overlaps of different classes. We show that such regularization is robust, discriminative and easy to optimize. The proposed method is combined with a sparse representation classifier (SRC) to evaluate on benchmark datasets. Results show that our approach achieves state-of-the-art performance compared to other dictionary learning methods.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neunet.2019.11.015DOI Listing

Publication Analysis

Top Keywords

dictionary learning
16
image classification
8
sparse representation
8
learning
6
dictionary
5
elm embedded
4
embedded discriminative
4
discriminative dictionary
4
learning image
4
classification dictionary
4

Similar Publications

Modeling Optical Coherence Tomography (OCT) images is crucial for numerous image processing applications and aids ophthalmologists in the early detection of macular abnormalities. Sparse representation-based models, particularly dictionary learning (DL), play a pivotal role in image modeling. Traditional DL methods often transform higher-order tensors into vectors and then aggregate them into a matrix, which overlooks the inherent multi-dimensional structure of the data.

View Article and Find Full Text PDF

Compressive electron backscatter diffraction imaging.

J Microsc

January 2025

Department of Mechanical, Materials and Aerospace Engineering, University of Liverpool, Liverpool, UK.

Electron backscatter diffraction (EBSD) has developed over the last few decades into a valuable crystallographic characterisation method for a wide range of sample types. Despite these advances, issues such as the complexity of sample preparation, relatively slow acquisition, and damage in beam-sensitive samples, still limit the quantity and quality of interpretable data that can be obtained. To mitigate these issues, here we propose a method based on the subsampling of probe positions and subsequent reconstruction of an incomplete data set.

View Article and Find Full Text PDF

Objective: This study examines a novel teaching model that integrates the development and use of a Medical Cloud Dictionary with project-based learning (PBL). We investigate whether this integrated approach improves teaching effectiveness, enhances student learning outcomes, and reduces teaching pressure compared to traditional PBL.

Methods: One hundred student volunteers were randomly assigned to an experimental group (n = 50) and a control group (n = 50).

View Article and Find Full Text PDF

Background: Natural language processing (NLP) enables the extraction of information embedded within unstructured texts, such as clinical case reports and trial eligibility criteria. By identifying relevant medical concepts, NLP facilitates the generation of structured and actionable data, supporting complex tasks like cohort identification and the analysis of clinical records. To accomplish those tasks, we introduce a deep learning-based and lexicon-based named entity recognition (NER) tool for texts in Spanish.

View Article and Find Full Text PDF

Public Health Discussions on Social Media: Evaluating Automated Sentiment Analysis Methods.

JMIR Form Res

January 2025

Department of Health Administration, The College of Health Professions, Central Michigan University, Mt Pleasant, MI, United States.

Article Synopsis
  • Sentiment analysis is a key method for analyzing text, especially in social media research, where the choice between manual and automated methods is crucial.
  • The study compared several sentiment analysis tools, including VADER, TEXT2DATA, LIWC-22, and ChatGPT 4.0, against manually coded sentiment scores from YouTube comments on the opioid crisis, assessing factors like ease of use and cost.
  • Findings revealed that LIWC-22 excelled in identifying sentiment patterns, while VADER was best at classifying negative comments, but overall, automated tools showed only fair agreement with manual coding, with ChatGPT performing poorly.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!