In the study, first-time personal exposure level of polycyclic aromatic hydrocarbons (PAHs) was measured during cooking hours in participants of three different types of kitchen both in the particulate and gaseous phase using traditional and improved cookstoves. Along with that, indoor particulate matter (PM) concentration was also estimated during the cooking hours to examine the impact of intervention in different kitchens. The results of the study clearly revealed that the kitchen characteristics and type of cookstove technology have a significant impact on PM, PM and PAHs concentration. Cookstoves intervention has resulted in maximum reduction of PM i.e. 75% in an enclosed kitchen followed by semi-enclosed and open kitchen having 71% and 52%, respectively. In addition, correlation analysis of PM and PM with PAHs showed a strong association (r = 0.9), showing the affinity of PAHs to bind to fine range of particles. Health risk assessment was also carried out to assess the PM daily dose and carcinogenic and non-carcinogenic risk due to inhalation of PAHs. The study confirmed the personal concentration of PAHs compounds was significantly high (p < 0.05) during use of traditional cookstove compared to improved cookstove among all the three kitchens. Furthermore, to measure the toxicity levels, PAHs concentrations have been converted to benzo[a]pyrene equivalence for calculating cancer and non-cancer effects using toxicity equivalency factors. The overall lifetime carcinogenic risk was the highest 2.5E-03, 6.4E-04 among women who prepared meals in the enclosed kitchen compared to 8.4E-04, 1.3E-04 in semi-enclosed and 2.2E-04, 4.6E-05 in the open kitchen during use of traditional and improved cookstoves, respectively, which exceeded the US EPA standard i.e. 1 × 10. The study underlined the importance of personal monitoring for exposure, and risks-based studies along with the time-activity of user to measure the actual inhalation risk for the participants. These findings indicated that women are exposed to hazardous smoke in the indoor kitchen and are at greater risk of developing cancer, especially in rural areas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2019.110135 | DOI Listing |
Environ Sci Pollut Res Int
December 2024
Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
Environmental consequences of petroleum mulch application are crucial in regions prone to wind erosion and desertification. This study aimed to assess the long-term effects of petroleum mulching on soil polycyclic aromatic hydrocarbon (PAH) concentrations and the associated human and ecological risk indices. These indices include incremental lifetime cancer risk (ILCR), hazard index (HI), toxic equivalent concentration (TEQ), toxic unit (TU), and risk quotient (RQ) in soil samples from Khuzestan province, Iran.
View Article and Find Full Text PDFJ Environ Sci Health B
December 2024
Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, Mexico.
Phenanthrene is classified as a priority environmental pollutant because of its impact on the environment and on human health as a mutagenic and carcinogenic agent. The aim of this study was isolated and identified new bacteria with the capability to degrade phenanthrene from Reynosa, Mexico. , , and had high tolerant to phenanthrene (250 mg L).
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, SA, Italy.
Anthropogenic pressures affect large stretches of Mediterranean coastal environments, determining alterations, including chemical pollution, able to impair ecosystem functioning and services. Among the pollutants of major concern for their toxicity and persistence, there are polycyclic aromatic hydrocarbons (PAHs), which can be effectively monitored through bioaccumulation approaches. However, the main biomonitor of PAHs in the Mediterranean Sea, Posidonia oceanica, is currently undergoing extensive regressions due to anthropogenic pressures, forcing the search for alternative biomonitors.
View Article and Find Full Text PDFSci Rep
December 2024
Division of Research, Innovation, and Economic Development (RIED), Tarleton State University, Stephenville, TX, 76402, USA.
Polycyclic aromatic compounds and petroleum hydrocarbons (PHs) are hazardous pollutants and seriously threaten the environment and human health. However, native microbial communities can adapt to these toxic pollutants, utilize these compounds as a carbon source, and eventually evolve to degrade these toxic contaminants. With this in mind, we isolated 26 bacterial strains from various environmental soil samples.
View Article and Find Full Text PDFEnviron Sci Technol
December 2024
Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
Black carbon or elemental carbon (EC) in the atmosphere plays an ambiguous role in acute respiratory toxic effects. Here, we evaluate the contribution of EC to the short-term toxicity (including cytotoxicity and oxidative stress potency) of fine particulate matter (PM) on the human respiratory tract using in vitro airway organoids and cell lines. The toxic potency of EC per unit mass, including char and soot, is more than 2 orders of magnitude lower than that of polycyclic aromatic hydrocarbons (PAHs), which are coemitted from incomplete combustion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!