Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objectives: To develop and evaluate the feasibility of an objective method using artificial intelligence (AI) and image processing in a semi-automated fashion for tumour-to-cortex peak early-phase enhancement ratio (PEER) in order to differentiate CD117(+) oncocytoma from the chromophobe subtype of renal cell carcinoma (ChRCC) using convolutional neural networks (CNNs) on computed tomography imaging.
Methods: The CNN was trained and validated to identify the kidney + tumour areas in images from 192 patients. The tumour type was differentiated through automated measurement of PEER after manual segmentation of tumours. The performance of this diagnostic model was compared with that of manual expert identification and tumour pathology with regard to accuracy, sensitivity and specificity, along with the root-mean-square error (RMSE), for the remaining 20 patients with CD117(+) oncocytoma or ChRCC.
Results: The mean ± sd Dice similarity score for segmentation was 0.66 ± 0.14 for the CNN model to identify the kidney + tumour areas. PEER evaluation achieved accuracy of 95% in tumour type classification (100% sensitivity and 89% specificity) compared with the final pathology results (RMSE of 0.15 for PEER ratio).
Conclusions: We have shown that deep learning could help to produce reliable discrimination of CD117(+) benign oncocytoma and malignant ChRCC through PEER measurements obtained by computer vision.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/bju.14985 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!