Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Research in northern latitudes confirms that climate teleconnections exert important influences on ungulate fitness, but studies from regions with milder climates are lacking. We explored the influence of the Pacific Decadal Oscillation (PDO), Northern Atlantic Oscillation (NAO), and El Niño-Southern Oscillation (ENSO) on male, 2.5-year-old white-tailed deer (Odocoileus virginianus) antler and body mass in Mississippi, USA, a region with mild winters and warm, humid summers. Explanatory variables were seasonal averages of each climate index extending back to 3 years prior to account for possible maternal and lag effects. Seasonal climate indices from the period of gestation and the first year of life were correlated with deer morphometrics. Reduced antler mass was largely correlated (R = 0.52) with PDO values indicating dry conditions during parturition and neonatal development and NAO values indicating warmer than normal winters during gestation and the first year of life. Body mass was less correlated (R = 0.16) to climate indices, responding negatively to warmer winter weather during the first winter of life. Climate may promote variable fitness among cohorts through long-term effects on male competition for dominance and breeding access. Because broad-scale climate indices simplify complex weather systems, they may benefit management at larger scales. Although this study compared climate with morphological variables, it is likely that demographic characteristics can likewise be modeled using climate indices. As climate change in this region is projected to include greater variability in summer precipitation, we may see concomitantly greater variability in fitness among cohorts of white-tailed deer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00484-019-01850-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!