Molybdenum disulfide quantum dots (MoS QDs) were chosen as a functional two-dimensional material to improve the separation performance of a traditional C18 column. In this work, MoS QDs were synthesized by the combination of sonication and solvothermal treatment of bulk MoS. The prepared MoS QDs were characterized by transmission electron microscope (TEM), Zeta potential measurement, UV-visible absorption and fluorescence spectroscopy. Then, a novel MoS QDs embedded C18 (Sil-MoS-C18) stationary phase was prepared for performing mixed-mode liquid chromatography. The results of elemental analysis (EA), thermogravimetric analysis (TGA), Fourier transform infrared spectrometry (FT-IR), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM) and Brunauer-Emmett-Teller (BET) measurements indicated the stationary phase was prepared successfully. Five types of compounds including alkylbenzenes, polycyclic aromatic hydrocarbons (PAHs), nucleosides and nucleobases, anilines and flavonoids were utilized to evaluate reversed phase, weak cation exchange and hydrophilic interaction of the new column. To a certain extent, the column could achieve separation for different properties of samples on one column, with less organic solvent and shorter time than conventional alkyl and amino columns. Furthermore, the mechanism for separation was studied by investigating effects of mobile phase composition and pH on retentions. In summary, the Sil-MoS-C18 stationary phase was deemed able to serve the performance of various types of phases, which revealed the prepared mixed-mode column could be potentially applied for the analysis of complex samples. Graphical abstract.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-019-02363-3DOI Listing

Publication Analysis

Top Keywords

stationary phase
16
mos qds
16
molybdenum disulfide
8
disulfide quantum
8
quantum dots
8
embedded c18
8
electron microscope
8
sil-mos-c18 stationary
8
phase prepared
8
phase
6

Similar Publications

This work explores the use of a cross-shaped organic framework that is used as a template for the investigation of multi-functionalized chromophores. We report the design and synthesis of a universal cross-shaped building block bearing two bromines and two iodines on its peripheral positions. The template can be synthesized on a gram scale in a five-step reaction comprising an oxidative homo-coupling macro-cyclization.

View Article and Find Full Text PDF

Chiral macrocycles have emerged as attractive media for chromatographic enantioseparation due to their excellent host-guest recognition properties. In this study, a new chiral stationary phase (CSP) based on 1,1'-binaphthyl chiral polyimine macrocycle (CPM) was reported. The CPM was synthesized by one-step aldehyde-amine condensation of (S)-2,2'-dihydroxy-[1,1'-binaphthalene]-3,3'-dicarboxaldehyde with 1,2-phenylenediamine and bonded on thiolated silica via the thiol-ene click reaction to afford the CSP.

View Article and Find Full Text PDF

Precise Light-Driven Polarity of Stationary Phase for Regulating Gradient Separation of Liquid Chromatography.

Anal Chem

December 2024

Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji City 133002, Jilin Province, China.

Generally, the traditional stationary phase for liquid chromatography is the key part, but with an in situ immutable property, leading to many separation limitations. Based on the former exploration of photosensitive gas chromatography, we successfully prepared a photosensitive monolithic capillary silica column with high light transmission, taking advantage of the reversible cis-trans isomerism of azobenzene. And the cis-trans isomerism has launched an effective, reversible, and precise control on the liquid chromatographic retention behavior just by photoinduction according to the theoretical basis of a good correlation between photoinduction time, -azobenzene ratio, and chromatographic retention factor () ( > 0.

View Article and Find Full Text PDF

Multi-omic investigation identifies key antifungal biochemistry during fermentation of a Streptomyces biological control agent.

Microbiol Res

December 2024

Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, Acton, ACT, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO), Advanced Engineering Biology Future Science Platform, Acton, ACT, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO), Microbiomes for One Systems Health Future Science Platform, Acton, ACT, Australia.

The use of multi-omic approaches has significantly advanced the exploration of microbial traits, leading to the discovery of new bioactive compounds and their mechanisms of action. Streptomyces sp. MH71 is known for its antifungal properties with potential for use in crop protection.

View Article and Find Full Text PDF

The present work reports on the preparation, characterization, and evaluation of a set of novel triphenyl-modified silica-based stationary phases without and with embedded ion-exchange sites for mixed-mode liquid chromatography. The three synthesized triphenyl phases differed in additionally incorporated ion-exchange sites. In one embodiment, allyltriphenylsilane was bonded to thiol-modified silica by thiol-ene click reaction, leading to particles with no ion-exchange sites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!